1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
// -*- mode: rust; -*-
//
// This file is part of curve25519-dalek.
// Copyright (c) 2016-2021 isis lovecruft
// Copyright (c) 2016-2019 Henry de Valence
// See LICENSE for licensing information.
//
// Authors:
// - isis agora lovecruft <isis@patternsinthevoid.net>
// - Henry de Valence <hdevalence@hdevalence.ca>

//! Field arithmetic modulo \\(p = 2\^{255} - 19\\), using \\(32\\)-bit
//! limbs with \\(64\\)-bit products.
//!
//! This code was originally derived from Adam Langley's Golang ed25519
//! implementation, and was then rewritten to use unsigned limbs instead
//! of signed limbs.

use core::fmt::Debug;
use core::ops::Neg;
use core::ops::{Add, AddAssign};
use core::ops::{Mul, MulAssign};
use core::ops::{Sub, SubAssign};

use subtle::Choice;
use subtle::ConditionallySelectable;

#[cfg(feature = "zeroize")]
use zeroize::Zeroize;

/// A `FieldElement2625` represents an element of the field
/// \\( \mathbb Z / (2\^{255} - 19)\\).
///
/// In the 32-bit implementation, a `FieldElement` is represented in
/// radix \\(2\^{25.5}\\) as ten `u32`s.  This means that a field
/// element \\(x\\) is represented as
/// $$
/// x = \sum\_{i=0}\^9 x\_i 2\^{\lceil i \frac {51} 2 \rceil}
///   = x\_0 + x\_1 2\^{26} + x\_2 2\^{51} + x\_3 2\^{77} + \cdots + x\_9 2\^{230};
/// $$
/// the coefficients are alternately bounded by \\(2\^{25}\\) and
/// \\(2\^{26}\\).  The limbs are allowed to grow between reductions up
/// to \\(2\^{25+b}\\) or \\(2\^{26+b}\\), where \\(b = 1.75\\).
///
/// # Note
///
/// The `curve25519_dalek::field` module provides a type alias
/// `curve25519_dalek::field::FieldElement` to either `FieldElement51`
/// or `FieldElement2625`.
///
/// The backend-specific type `FieldElement2625` should not be used
/// outside of the `curve25519_dalek::field` module.
#[derive(Copy, Clone)]
pub struct FieldElement2625(pub(crate) [u32; 10]);

impl Debug for FieldElement2625 {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(f, "FieldElement2625({:?})", &self.0[..])
    }
}

#[cfg(feature = "zeroize")]
impl Zeroize for FieldElement2625 {
    fn zeroize(&mut self) {
        self.0.zeroize();
    }
}

impl<'b> AddAssign<&'b FieldElement2625> for FieldElement2625 {
    fn add_assign(&mut self, _rhs: &'b FieldElement2625) {
        for i in 0..10 {
            self.0[i] += _rhs.0[i];
        }
    }
}

impl<'a, 'b> Add<&'b FieldElement2625> for &'a FieldElement2625 {
    type Output = FieldElement2625;
    fn add(self, _rhs: &'b FieldElement2625) -> FieldElement2625 {
        let mut output = *self;
        output += _rhs;
        output
    }
}

impl<'b> SubAssign<&'b FieldElement2625> for FieldElement2625 {
    fn sub_assign(&mut self, _rhs: &'b FieldElement2625) {
        // See comment in FieldElement51::Sub
        //
        // Compute a - b as ((a + 2^4 * p) - b) to avoid underflow.
        let b = &_rhs.0;
        self.0 = FieldElement2625::reduce([
            ((self.0[0] + (0x3ffffed << 4)) - b[0]) as u64,
            ((self.0[1] + (0x1ffffff << 4)) - b[1]) as u64,
            ((self.0[2] + (0x3ffffff << 4)) - b[2]) as u64,
            ((self.0[3] + (0x1ffffff << 4)) - b[3]) as u64,
            ((self.0[4] + (0x3ffffff << 4)) - b[4]) as u64,
            ((self.0[5] + (0x1ffffff << 4)) - b[5]) as u64,
            ((self.0[6] + (0x3ffffff << 4)) - b[6]) as u64,
            ((self.0[7] + (0x1ffffff << 4)) - b[7]) as u64,
            ((self.0[8] + (0x3ffffff << 4)) - b[8]) as u64,
            ((self.0[9] + (0x1ffffff << 4)) - b[9]) as u64,
        ])
        .0;
    }
}

impl<'a, 'b> Sub<&'b FieldElement2625> for &'a FieldElement2625 {
    type Output = FieldElement2625;
    fn sub(self, _rhs: &'b FieldElement2625) -> FieldElement2625 {
        let mut output = *self;
        output -= _rhs;
        output
    }
}

impl<'b> MulAssign<&'b FieldElement2625> for FieldElement2625 {
    fn mul_assign(&mut self, _rhs: &'b FieldElement2625) {
        let result = (self as &FieldElement2625) * _rhs;
        self.0 = result.0;
    }
}

impl<'a, 'b> Mul<&'b FieldElement2625> for &'a FieldElement2625 {
    type Output = FieldElement2625;

    #[rustfmt::skip] // keep alignment of z* calculations
    fn mul(self, _rhs: &'b FieldElement2625) -> FieldElement2625 {
        /// Helper function to multiply two 32-bit integers with 64 bits
        /// of output.
        #[inline(always)]
        fn m(x: u32, y: u32) -> u64 {
            (x as u64) * (y as u64)
        }

        // Alias self, _rhs for more readable formulas
        let x: &[u32; 10] = &self.0;
        let y: &[u32; 10] = &_rhs.0;

        // We assume that the input limbs x[i], y[i] are bounded by:
        //
        // x[i], y[i] < 2^(26 + b) if i even
        // x[i], y[i] < 2^(25 + b) if i odd
        //
        // where b is a (real) parameter representing the excess bits of
        // the limbs.  We track the bitsizes of all variables through
        // the computation and solve at the end for the allowable
        // headroom bitsize b (which determines how many additions we
        // can perform between reductions or multiplications).

        let y1_19 = 19 * y[1]; // This fits in a u32
        let y2_19 = 19 * y[2]; // iff 26 + b + lg(19) < 32
        let y3_19 = 19 * y[3]; // if  b < 32 - 26 - 4.248 = 1.752
        let y4_19 = 19 * y[4];
        let y5_19 = 19 * y[5]; // below, b<2.5: this is a bottleneck,
        let y6_19 = 19 * y[6]; // could be avoided by promoting to
        let y7_19 = 19 * y[7]; // u64 here instead of in m()
        let y8_19 = 19 * y[8];
        let y9_19 = 19 * y[9];

        // What happens when we multiply x[i] with y[j] and place the
        // result into the (i+j)-th limb?
        //
        // x[i]      represents the value x[i]*2^ceil(i*51/2)
        // y[j]      represents the value y[j]*2^ceil(j*51/2)
        // z[i+j]    represents the value z[i+j]*2^ceil((i+j)*51/2)
        // x[i]*y[j] represents the value x[i]*y[i]*2^(ceil(i*51/2)+ceil(j*51/2))
        //
        // Since the radix is already accounted for, the result placed
        // into the (i+j)-th limb should be
        //
        // x[i]*y[i]*2^(ceil(i*51/2)+ceil(j*51/2) - ceil((i+j)*51/2)).
        //
        // The value of ceil(i*51/2)+ceil(j*51/2) - ceil((i+j)*51/2) is
        // 1 when both i and j are odd, and 0 otherwise.  So we add
        //
        //   x[i]*y[j] if either i or j is even
        // 2*x[i]*y[j] if i and j are both odd
        //
        // by using precomputed multiples of x[i] for odd i:

        let x1_2 = 2 * x[1]; // This fits in a u32 iff 25 + b + 1 < 32
        let x3_2 = 2 * x[3]; //                    iff b < 6
        let x5_2 = 2 * x[5];
        let x7_2 = 2 * x[7];
        let x9_2 = 2 * x[9];

        let z0 = m(x[0], y[0]) + m(x1_2, y9_19) + m(x[2], y8_19) + m(x3_2, y7_19) + m(x[4], y6_19) + m(x5_2, y5_19) + m(x[6], y4_19) + m(x7_2, y3_19) + m(x[8], y2_19) + m(x9_2, y1_19);
        let z1 = m(x[0], y[1]) + m(x[1],  y[0]) + m(x[2], y9_19) + m(x[3], y8_19) + m(x[4], y7_19) + m(x[5], y6_19) + m(x[6], y5_19) + m(x[7], y4_19) + m(x[8], y3_19) + m(x[9], y2_19);
        let z2 = m(x[0], y[2]) + m(x1_2,  y[1]) + m(x[2], y[0])  + m(x3_2, y9_19) + m(x[4], y8_19) + m(x5_2, y7_19) + m(x[6], y6_19) + m(x7_2, y5_19) + m(x[8], y4_19) + m(x9_2, y3_19);
        let z3 = m(x[0], y[3]) + m(x[1],  y[2]) + m(x[2], y[1])  + m(x[3],  y[0]) + m(x[4], y9_19) + m(x[5], y8_19) + m(x[6], y7_19) + m(x[7], y6_19) + m(x[8], y5_19) + m(x[9], y4_19);
        let z4 = m(x[0], y[4]) + m(x1_2,  y[3]) + m(x[2], y[2])  + m(x3_2,  y[1]) + m(x[4],  y[0]) + m(x5_2, y9_19) + m(x[6], y8_19) + m(x7_2, y7_19) + m(x[8], y6_19) + m(x9_2, y5_19);
        let z5 = m(x[0], y[5]) + m(x[1],  y[4]) + m(x[2], y[3])  + m(x[3],  y[2]) + m(x[4],  y[1]) + m(x[5],  y[0]) + m(x[6], y9_19) + m(x[7], y8_19) + m(x[8], y7_19) + m(x[9], y6_19);
        let z6 = m(x[0], y[6]) + m(x1_2,  y[5]) + m(x[2], y[4])  + m(x3_2,  y[3]) + m(x[4],  y[2]) + m(x5_2,  y[1]) + m(x[6],  y[0]) + m(x7_2, y9_19) + m(x[8], y8_19) + m(x9_2, y7_19);
        let z7 = m(x[0], y[7]) + m(x[1],  y[6]) + m(x[2], y[5])  + m(x[3],  y[4]) + m(x[4],  y[3]) + m(x[5],  y[2]) + m(x[6],  y[1]) + m(x[7],  y[0]) + m(x[8], y9_19) + m(x[9], y8_19);
        let z8 = m(x[0], y[8]) + m(x1_2,  y[7]) + m(x[2], y[6])  + m(x3_2,  y[5]) + m(x[4],  y[4]) + m(x5_2,  y[3]) + m(x[6],  y[2]) + m(x7_2,  y[1]) + m(x[8],  y[0]) + m(x9_2, y9_19);
        let z9 = m(x[0], y[9]) + m(x[1],  y[8]) + m(x[2], y[7])  + m(x[3],  y[6]) + m(x[4],  y[5]) + m(x[5],  y[4]) + m(x[6],  y[3]) + m(x[7],  y[2]) + m(x[8],  y[1]) + m(x[9],  y[0]);

        // How big is the contribution to z[i+j] from x[i], y[j]?
        //
        // Using the bounds above, we get:
        //
        // i even, j even:   x[i]*y[j] <   2^(26+b)*2^(26+b) = 2*2^(51+2*b)
        // i  odd, j even:   x[i]*y[j] <   2^(25+b)*2^(26+b) = 1*2^(51+2*b)
        // i even, j  odd:   x[i]*y[j] <   2^(26+b)*2^(25+b) = 1*2^(51+2*b)
        // i  odd, j  odd: 2*x[i]*y[j] < 2*2^(25+b)*2^(25+b) = 1*2^(51+2*b)
        //
        // We perform inline reduction mod p by replacing 2^255 by 19
        // (since 2^255 - 19 = 0 mod p).  This adds a factor of 19, so
        // we get the bounds (z0 is the biggest one, but calculated for
        // posterity here in case finer estimation is needed later):
        //
        //  z0 < ( 2 + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 )*2^(51 + 2b) = 249*2^(51 + 2*b)
        //  z1 < ( 1 +  1   + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 )*2^(51 + 2b) = 154*2^(51 + 2*b)
        //  z2 < ( 2 +  1   +  2   + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 )*2^(51 + 2b) = 195*2^(51 + 2*b)
        //  z3 < ( 1 +  1   +  1   +  1   + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 )*2^(51 + 2b) = 118*2^(51 + 2*b)
        //  z4 < ( 2 +  1   +  2   +  1   +  2   + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 )*2^(51 + 2b) = 141*2^(51 + 2*b)
        //  z5 < ( 1 +  1   +  1   +  1   +  1   +  1   + 1*19 + 1*19 + 1*19 + 1*19 )*2^(51 + 2b) =  82*2^(51 + 2*b)
        //  z6 < ( 2 +  1   +  2   +  1   +  2   +  1   +  2   + 1*19 + 2*19 + 1*19 )*2^(51 + 2b) =  87*2^(51 + 2*b)
        //  z7 < ( 1 +  1   +  1   +  1   +  1   +  1   +  1   +  1   + 1*19 + 1*19 )*2^(51 + 2b) =  46*2^(51 + 2*b)
        //  z6 < ( 2 +  1   +  2   +  1   +  2   +  1   +  2   +  1   +  2   + 1*19 )*2^(51 + 2b) =  33*2^(51 + 2*b)
        //  z7 < ( 1 +  1   +  1   +  1   +  1   +  1   +  1   +  1   +  1   +  1   )*2^(51 + 2b) =  10*2^(51 + 2*b)
        //
        // So z[0] fits into a u64 if 51 + 2*b + lg(249) < 64
        //                         if b < 2.5.
        FieldElement2625::reduce([z0, z1, z2, z3, z4, z5, z6, z7, z8, z9])
    }
}

impl<'a> Neg for &'a FieldElement2625 {
    type Output = FieldElement2625;
    fn neg(self) -> FieldElement2625 {
        let mut output = *self;
        output.negate();
        output
    }
}

impl ConditionallySelectable for FieldElement2625 {
    fn conditional_select(
        a: &FieldElement2625,
        b: &FieldElement2625,
        choice: Choice,
    ) -> FieldElement2625 {
        FieldElement2625([
            u32::conditional_select(&a.0[0], &b.0[0], choice),
            u32::conditional_select(&a.0[1], &b.0[1], choice),
            u32::conditional_select(&a.0[2], &b.0[2], choice),
            u32::conditional_select(&a.0[3], &b.0[3], choice),
            u32::conditional_select(&a.0[4], &b.0[4], choice),
            u32::conditional_select(&a.0[5], &b.0[5], choice),
            u32::conditional_select(&a.0[6], &b.0[6], choice),
            u32::conditional_select(&a.0[7], &b.0[7], choice),
            u32::conditional_select(&a.0[8], &b.0[8], choice),
            u32::conditional_select(&a.0[9], &b.0[9], choice),
        ])
    }

    fn conditional_assign(&mut self, other: &FieldElement2625, choice: Choice) {
        self.0[0].conditional_assign(&other.0[0], choice);
        self.0[1].conditional_assign(&other.0[1], choice);
        self.0[2].conditional_assign(&other.0[2], choice);
        self.0[3].conditional_assign(&other.0[3], choice);
        self.0[4].conditional_assign(&other.0[4], choice);
        self.0[5].conditional_assign(&other.0[5], choice);
        self.0[6].conditional_assign(&other.0[6], choice);
        self.0[7].conditional_assign(&other.0[7], choice);
        self.0[8].conditional_assign(&other.0[8], choice);
        self.0[9].conditional_assign(&other.0[9], choice);
    }

    fn conditional_swap(a: &mut FieldElement2625, b: &mut FieldElement2625, choice: Choice) {
        u32::conditional_swap(&mut a.0[0], &mut b.0[0], choice);
        u32::conditional_swap(&mut a.0[1], &mut b.0[1], choice);
        u32::conditional_swap(&mut a.0[2], &mut b.0[2], choice);
        u32::conditional_swap(&mut a.0[3], &mut b.0[3], choice);
        u32::conditional_swap(&mut a.0[4], &mut b.0[4], choice);
        u32::conditional_swap(&mut a.0[5], &mut b.0[5], choice);
        u32::conditional_swap(&mut a.0[6], &mut b.0[6], choice);
        u32::conditional_swap(&mut a.0[7], &mut b.0[7], choice);
        u32::conditional_swap(&mut a.0[8], &mut b.0[8], choice);
        u32::conditional_swap(&mut a.0[9], &mut b.0[9], choice);
    }
}

impl FieldElement2625 {
    /// The scalar \\( 0 \\).
    pub const ZERO: FieldElement2625 = FieldElement2625([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
    /// The scalar \\( 1 \\).
    pub const ONE: FieldElement2625 = FieldElement2625([1, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
    /// The scalar \\( -1 \\).
    pub const MINUS_ONE: FieldElement2625 = FieldElement2625([
        0x3ffffec, 0x1ffffff, 0x3ffffff, 0x1ffffff, 0x3ffffff, 0x1ffffff, 0x3ffffff, 0x1ffffff,
        0x3ffffff, 0x1ffffff,
    ]);

    /// Invert the sign of this field element
    pub fn negate(&mut self) {
        // Compute -b as ((2^4 * p) - b) to avoid underflow.
        let neg = FieldElement2625::reduce([
            ((0x3ffffed << 4) - self.0[0]) as u64,
            ((0x1ffffff << 4) - self.0[1]) as u64,
            ((0x3ffffff << 4) - self.0[2]) as u64,
            ((0x1ffffff << 4) - self.0[3]) as u64,
            ((0x3ffffff << 4) - self.0[4]) as u64,
            ((0x1ffffff << 4) - self.0[5]) as u64,
            ((0x3ffffff << 4) - self.0[6]) as u64,
            ((0x1ffffff << 4) - self.0[7]) as u64,
            ((0x3ffffff << 4) - self.0[8]) as u64,
            ((0x1ffffff << 4) - self.0[9]) as u64,
        ]);
        self.0 = neg.0;
    }

    /// Given `k > 0`, return `self^(2^k)`.
    pub fn pow2k(&self, k: u32) -> FieldElement2625 {
        debug_assert!(k > 0);
        let mut z = self.square();
        for _ in 1..k {
            z = z.square();
        }
        z
    }

    /// Given unreduced coefficients `z[0], ..., z[9]` of any size,
    /// carry and reduce them mod p to obtain a `FieldElement2625`
    /// whose coefficients have excess `b < 0.007`.
    ///
    /// In other words, each coefficient of the result is bounded by
    /// either `2^(25 + 0.007)` or `2^(26 + 0.007)`, as appropriate.
    #[rustfmt::skip] // keep alignment of carry chain
    fn reduce(mut z: [u64; 10]) -> FieldElement2625 {

        const LOW_25_BITS: u64 = (1 << 25) - 1;
        const LOW_26_BITS: u64 = (1 << 26) - 1;

        /// Carry the value from limb i = 0..8 to limb i+1
        #[inline(always)]
        fn carry(z: &mut [u64; 10], i: usize) {
            debug_assert!(i < 9);
            if i % 2 == 0 {
                // Even limbs have 26 bits
                z[i + 1] += z[i] >> 26;
                z[i] &= LOW_26_BITS;
            } else {
                // Odd limbs have 25 bits
                z[i + 1] += z[i] >> 25;
                z[i] &= LOW_25_BITS;
            }
        }

        // Perform two halves of the carry chain in parallel.
        carry(&mut z, 0); carry(&mut z, 4);
        carry(&mut z, 1); carry(&mut z, 5);
        carry(&mut z, 2); carry(&mut z, 6);
        carry(&mut z, 3); carry(&mut z, 7);
        // Since z[3] < 2^64, c < 2^(64-25) = 2^39,
        // so    z[4] < 2^26 + 2^39 < 2^39.0002
        carry(&mut z, 4); carry(&mut z, 8);
        // Now z[4] < 2^26
        // and z[5] < 2^25 + 2^13.0002 < 2^25.0004 (good enough)

        // Last carry has a multiplication by 19:
        z[0] += 19 * (z[9] >> 25);
        z[9] &= LOW_25_BITS;

        // Since z[9] < 2^64, c < 2^(64-25) = 2^39,
        //    so z[0] + 19*c < 2^26 + 2^43.248 < 2^43.249.
        carry(&mut z, 0);
        // Now z[1] < 2^25 - 2^(43.249 - 26)
        //          < 2^25.007 (good enough)
        // and we're done.

        FieldElement2625([
            z[0] as u32,
            z[1] as u32,
            z[2] as u32,
            z[3] as u32,
            z[4] as u32,
            z[5] as u32,
            z[6] as u32,
            z[7] as u32,
            z[8] as u32,
            z[9] as u32,
        ])
    }

    /// Load a `FieldElement51` from the low 255 bits of a 256-bit
    /// input.
    ///
    /// # Warning
    ///
    /// This function does not check that the input used the canonical
    /// representative.  It masks the high bit, but it will happily
    /// decode 2^255 - 18 to 1.  Applications that require a canonical
    /// encoding of every field element should decode, re-encode to
    /// the canonical encoding, and check that the input was
    /// canonical.
    #[rustfmt::skip] // keep alignment of h[*] values
    pub fn from_bytes(data: &[u8; 32]) -> FieldElement2625 {
        #[inline]
        fn load3(b: &[u8]) -> u64 {
           (b[0] as u64) | ((b[1] as u64) << 8) | ((b[2] as u64) << 16)
        }

        #[inline]
        fn load4(b: &[u8]) -> u64 {
           (b[0] as u64) | ((b[1] as u64) << 8) | ((b[2] as u64) << 16) | ((b[3] as u64) << 24)
        }

        let mut h = [0u64;10];
        const LOW_23_BITS: u64 = (1 << 23) - 1;
        h[0] =  load4(&data[ 0..]);
        h[1] =  load3(&data[ 4..]) << 6;
        h[2] =  load3(&data[ 7..]) << 5;
        h[3] =  load3(&data[10..]) << 3;
        h[4] =  load3(&data[13..]) << 2;
        h[5] =  load4(&data[16..]);
        h[6] =  load3(&data[20..]) << 7;
        h[7] =  load3(&data[23..]) << 5;
        h[8] =  load3(&data[26..]) << 4;
        h[9] = (load3(&data[29..]) & LOW_23_BITS) << 2;

        FieldElement2625::reduce(h)
    }

    /// Serialize this `FieldElement51` to a 32-byte array.  The
    /// encoding is canonical.
    #[allow(clippy::identity_op)]
    pub fn as_bytes(&self) -> [u8; 32] {
        let inp = &self.0;
        // Reduce the value represented by `in` to the range [0,2*p)
        let mut h: [u32; 10] = FieldElement2625::reduce([
            // XXX this cast is annoying
            inp[0] as u64,
            inp[1] as u64,
            inp[2] as u64,
            inp[3] as u64,
            inp[4] as u64,
            inp[5] as u64,
            inp[6] as u64,
            inp[7] as u64,
            inp[8] as u64,
            inp[9] as u64,
        ])
        .0;

        // Let h be the value to encode.
        //
        // Write h = pq + r with 0 <= r < p.  We want to compute r = h mod p.
        //
        // Since h < 2*p, q = 0 or 1, with q = 0 when h < p and q = 1 when h >= p.
        //
        // Notice that h >= p <==> h + 19 >= p + 19 <==> h + 19 >= 2^255.
        // Therefore q can be computed as the carry bit of h + 19.

        let mut q: u32 = (h[0] + 19) >> 26;
        q = (h[1] + q) >> 25;
        q = (h[2] + q) >> 26;
        q = (h[3] + q) >> 25;
        q = (h[4] + q) >> 26;
        q = (h[5] + q) >> 25;
        q = (h[6] + q) >> 26;
        q = (h[7] + q) >> 25;
        q = (h[8] + q) >> 26;
        q = (h[9] + q) >> 25;

        debug_assert!(q == 0 || q == 1);

        // Now we can compute r as r = h - pq = r - (2^255-19)q = r + 19q - 2^255q

        const LOW_25_BITS: u32 = (1 << 25) - 1;
        const LOW_26_BITS: u32 = (1 << 26) - 1;

        h[0] += 19 * q;

        // Now carry the result to compute r + 19q...
        h[1] += h[0] >> 26;
        h[0] &= LOW_26_BITS;
        h[2] += h[1] >> 25;
        h[1] &= LOW_25_BITS;
        h[3] += h[2] >> 26;
        h[2] &= LOW_26_BITS;
        h[4] += h[3] >> 25;
        h[3] &= LOW_25_BITS;
        h[5] += h[4] >> 26;
        h[4] &= LOW_26_BITS;
        h[6] += h[5] >> 25;
        h[5] &= LOW_25_BITS;
        h[7] += h[6] >> 26;
        h[6] &= LOW_26_BITS;
        h[8] += h[7] >> 25;
        h[7] &= LOW_25_BITS;
        h[9] += h[8] >> 26;
        h[8] &= LOW_26_BITS;

        // ... but instead of carrying the value
        // (h[9] >> 25) = q*2^255 into another limb,
        // discard it, subtracting the value from h.
        debug_assert!((h[9] >> 25) == 0 || (h[9] >> 25) == 1);
        h[9] &= LOW_25_BITS;

        let mut s = [0u8; 32];
        s[0] = (h[0] >> 0) as u8;
        s[1] = (h[0] >> 8) as u8;
        s[2] = (h[0] >> 16) as u8;
        s[3] = ((h[0] >> 24) | (h[1] << 2)) as u8;
        s[4] = (h[1] >> 6) as u8;
        s[5] = (h[1] >> 14) as u8;
        s[6] = ((h[1] >> 22) | (h[2] << 3)) as u8;
        s[7] = (h[2] >> 5) as u8;
        s[8] = (h[2] >> 13) as u8;
        s[9] = ((h[2] >> 21) | (h[3] << 5)) as u8;
        s[10] = (h[3] >> 3) as u8;
        s[11] = (h[3] >> 11) as u8;
        s[12] = ((h[3] >> 19) | (h[4] << 6)) as u8;
        s[13] = (h[4] >> 2) as u8;
        s[14] = (h[4] >> 10) as u8;
        s[15] = (h[4] >> 18) as u8;
        s[16] = (h[5] >> 0) as u8;
        s[17] = (h[5] >> 8) as u8;
        s[18] = (h[5] >> 16) as u8;
        s[19] = ((h[5] >> 24) | (h[6] << 1)) as u8;
        s[20] = (h[6] >> 7) as u8;
        s[21] = (h[6] >> 15) as u8;
        s[22] = ((h[6] >> 23) | (h[7] << 3)) as u8;
        s[23] = (h[7] >> 5) as u8;
        s[24] = (h[7] >> 13) as u8;
        s[25] = ((h[7] >> 21) | (h[8] << 4)) as u8;
        s[26] = (h[8] >> 4) as u8;
        s[27] = (h[8] >> 12) as u8;
        s[28] = ((h[8] >> 20) | (h[9] << 6)) as u8;
        s[29] = (h[9] >> 2) as u8;
        s[30] = (h[9] >> 10) as u8;
        s[31] = (h[9] >> 18) as u8;

        // Check that high bit is cleared
        debug_assert!((s[31] & 0b1000_0000u8) == 0u8);

        s
    }

    #[rustfmt::skip] // keep alignment of z* calculations
    fn square_inner(&self) -> [u64; 10] {
        // Optimized version of multiplication for the case of squaring.
        // Pre- and post- conditions identical to multiplication function.
        let x = &self.0;
        let x0_2  =  2 * x[0];
        let x1_2  =  2 * x[1];
        let x2_2  =  2 * x[2];
        let x3_2  =  2 * x[3];
        let x4_2  =  2 * x[4];
        let x5_2  =  2 * x[5];
        let x6_2  =  2 * x[6];
        let x7_2  =  2 * x[7];
        let x5_19 = 19 * x[5];
        let x6_19 = 19 * x[6];
        let x7_19 = 19 * x[7];
        let x8_19 = 19 * x[8];
        let x9_19 = 19 * x[9];

        /// Helper function to multiply two 32-bit integers with 64 bits
        /// of output.
        #[inline(always)]
        fn m(x: u32, y: u32) -> u64 {
            (x as u64) * (y as u64)
        }

        // This block is rearranged so that instead of doing a 32-bit multiplication by 38, we do a
        // 64-bit multiplication by 2 on the results.  This is because lg(38) is too big: we would
        // have less than 1 bit of headroom left, which is too little.
        let mut z = [0u64; 10];
        z[0] = m(x[0], x[0]) + m(x2_2, x8_19) + m(x4_2, x6_19) + (m(x1_2, x9_19) +  m(x3_2, x7_19) + m(x[5], x5_19)) * 2;
        z[1] = m(x0_2, x[1]) + m(x3_2, x8_19) + m(x5_2, x6_19) + (m(x[2], x9_19) +  m(x[4], x7_19)                 ) * 2;
        z[2] = m(x0_2, x[2]) + m(x1_2,  x[1]) + m(x4_2, x8_19) +  m(x[6], x6_19) + (m(x3_2, x9_19) + m(x5_2, x7_19)) * 2;
        z[3] = m(x0_2, x[3]) + m(x1_2,  x[2]) + m(x5_2, x8_19) + (m(x[4], x9_19) +  m(x[6], x7_19)                 ) * 2;
        z[4] = m(x0_2, x[4]) + m(x1_2,  x3_2) + m(x[2],  x[2]) +  m(x6_2, x8_19) + (m(x5_2, x9_19) + m(x[7], x7_19)) * 2;
        z[5] = m(x0_2, x[5]) + m(x1_2,  x[4]) + m(x2_2,  x[3]) +  m(x7_2, x8_19) +  m(x[6], x9_19)                   * 2;
        z[6] = m(x0_2, x[6]) + m(x1_2,  x5_2) + m(x2_2,  x[4]) +  m(x3_2,  x[3]) +  m(x[8], x8_19) + m(x7_2, x9_19)  * 2;
        z[7] = m(x0_2, x[7]) + m(x1_2,  x[6]) + m(x2_2,  x[5]) +  m(x3_2,  x[4]) +  m(x[8], x9_19)                   * 2;
        z[8] = m(x0_2, x[8]) + m(x1_2,  x7_2) + m(x2_2,  x[6]) +  m(x3_2,  x5_2) +  m(x[4],  x[4]) + m(x[9], x9_19)  * 2;
        z[9] = m(x0_2, x[9]) + m(x1_2,  x[8]) + m(x2_2,  x[7]) +  m(x3_2,  x[6]) +  m(x4_2,  x[5])                      ;

        z
    }

    /// Compute `self^2`.
    pub fn square(&self) -> FieldElement2625 {
        FieldElement2625::reduce(self.square_inner())
    }

    /// Compute `2*self^2`.
    pub fn square2(&self) -> FieldElement2625 {
        let mut coeffs = self.square_inner();
        for coeff in &mut coeffs {
            *coeff += *coeff;
        }
        FieldElement2625::reduce(coeffs)
    }
}