1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
// -*- mode: rust; -*-
//
// This file is part of curve25519-dalek.
// Copyright (c) 2019 Oleg Andreev
// See LICENSE for licensing information.
//
// Authors:
// - Oleg Andreev <oleganza@gmail.com>
#![allow(non_snake_case)]
#[curve25519_dalek_derive::unsafe_target_feature_specialize(
"avx2",
conditional("avx512ifma,avx512vl", nightly)
)]
pub mod spec {
use alloc::vec::Vec;
use core::borrow::Borrow;
use core::cmp::Ordering;
#[for_target_feature("avx2")]
use crate::backend::vector::avx2::{CachedPoint, ExtendedPoint};
#[for_target_feature("avx512ifma")]
use crate::backend::vector::ifma::{CachedPoint, ExtendedPoint};
use crate::edwards::EdwardsPoint;
use crate::scalar::Scalar;
use crate::traits::{Identity, VartimeMultiscalarMul};
/// Implements a version of Pippenger's algorithm.
///
/// See the documentation in the serial `scalar_mul::pippenger` module for details.
pub struct Pippenger;
impl VartimeMultiscalarMul for Pippenger {
type Point = EdwardsPoint;
fn optional_multiscalar_mul<I, J>(scalars: I, points: J) -> Option<EdwardsPoint>
where
I: IntoIterator,
I::Item: Borrow<Scalar>,
J: IntoIterator<Item = Option<EdwardsPoint>>,
{
let mut scalars = scalars.into_iter();
let size = scalars.by_ref().size_hint().0;
let w = if size < 500 {
6
} else if size < 800 {
7
} else {
8
};
let max_digit: usize = 1 << w;
let digits_count: usize = Scalar::to_radix_2w_size_hint(w);
let buckets_count: usize = max_digit / 2; // digits are signed+centered hence 2^w/2, excluding 0-th bucket
// Collect optimized scalars and points in a buffer for repeated access
// (scanning the whole collection per each digit position).
let scalars = scalars.map(|s| s.borrow().as_radix_2w(w));
let points = points
.into_iter()
.map(|p| p.map(|P| CachedPoint::from(ExtendedPoint::from(P))));
let scalars_points = scalars
.zip(points)
.map(|(s, maybe_p)| maybe_p.map(|p| (s, p)))
.collect::<Option<Vec<_>>>()?;
// Prepare 2^w/2 buckets.
// buckets[i] corresponds to a multiplication factor (i+1).
let mut buckets: Vec<ExtendedPoint> = (0..buckets_count)
.map(|_| ExtendedPoint::identity())
.collect();
let mut columns = (0..digits_count).rev().map(|digit_index| {
// Clear the buckets when processing another digit.
for bucket in &mut buckets {
*bucket = ExtendedPoint::identity();
}
// Iterate over pairs of (point, scalar)
// and add/sub the point to the corresponding bucket.
// Note: if we add support for precomputed lookup tables,
// we'll be adding/subtractiong point premultiplied by `digits[i]` to buckets[0].
for (digits, pt) in scalars_points.iter() {
// Widen digit so that we don't run into edge cases when w=8.
let digit = digits[digit_index] as i16;
match digit.cmp(&0) {
Ordering::Greater => {
let b = (digit - 1) as usize;
buckets[b] = &buckets[b] + pt;
}
Ordering::Less => {
let b = (-digit - 1) as usize;
buckets[b] = &buckets[b] - pt;
}
Ordering::Equal => {}
}
}
// Add the buckets applying the multiplication factor to each bucket.
// The most efficient way to do that is to have a single sum with two running sums:
// an intermediate sum from last bucket to the first, and a sum of intermediate sums.
//
// For example, to add buckets 1*A, 2*B, 3*C we need to add these points:
// C
// C B
// C B A Sum = C + (C+B) + (C+B+A)
let mut buckets_intermediate_sum = buckets[buckets_count - 1];
let mut buckets_sum = buckets[buckets_count - 1];
for i in (0..(buckets_count - 1)).rev() {
buckets_intermediate_sum =
&buckets_intermediate_sum + &CachedPoint::from(buckets[i]);
buckets_sum = &buckets_sum + &CachedPoint::from(buckets_intermediate_sum);
}
buckets_sum
});
// Take the high column as an initial value to avoid wasting time doubling the identity element in `fold()`.
// `unwrap()` always succeeds because we know we have more than zero digits.
let hi_column = columns.next().unwrap();
Some(
columns
.fold(hi_column, |total, p| {
&total.mul_by_pow_2(w as u32) + &CachedPoint::from(p)
})
.into(),
)
}
}
#[cfg(test)]
mod test {
#[test]
fn test_vartime_pippenger() {
use super::*;
use crate::constants;
use crate::scalar::Scalar;
// Reuse points across different tests
let mut n = 512;
let x = Scalar::from(2128506u64).invert();
let y = Scalar::from(4443282u64).invert();
let points: Vec<_> = (0..n)
.map(|i| constants::ED25519_BASEPOINT_POINT * Scalar::from(1 + i as u64))
.collect();
let scalars: Vec<_> = (0..n)
.map(|i| x + (Scalar::from(i as u64) * y)) // fast way to make ~random but deterministic scalars
.collect();
let premultiplied: Vec<EdwardsPoint> = scalars
.iter()
.zip(points.iter())
.map(|(sc, pt)| sc * pt)
.collect();
while n > 0 {
let scalars = &scalars[0..n].to_vec();
let points = &points[0..n].to_vec();
let control: EdwardsPoint = premultiplied[0..n].iter().sum();
let subject = Pippenger::vartime_multiscalar_mul(scalars.clone(), points.clone());
assert_eq!(subject.compress(), control.compress());
n = n / 2;
}
}
}
}