1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! FunctionalDependencies keeps track of functional dependencies
//! inside DFSchema.
use crate::{DFSchema, DFSchemaRef, DataFusionError, JoinType, Result};
use sqlparser::ast::TableConstraint;
use std::collections::HashSet;
use std::fmt::{Display, Formatter};
/// This object defines a constraint on a table.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
enum Constraint {
/// Columns with the given indices form a composite primary key (they are
/// jointly unique and not nullable):
PrimaryKey(Vec<usize>),
/// Columns with the given indices form a composite unique key:
Unique(Vec<usize>),
}
/// This object encapsulates a list of functional constraints:
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct Constraints {
inner: Vec<Constraint>,
}
impl Constraints {
/// Create empty constraints
pub fn empty() -> Self {
Constraints::new(vec![])
}
// This method is private.
// Outside callers can either create empty constraint using `Constraints::empty` API.
// or create constraint from table constraints using `Constraints::new_from_table_constraints` API.
fn new(constraints: Vec<Constraint>) -> Self {
Self { inner: constraints }
}
/// Convert each `TableConstraint` to corresponding `Constraint`
pub fn new_from_table_constraints(
constraints: &[TableConstraint],
df_schema: &DFSchemaRef,
) -> Result<Self> {
let constraints = constraints
.iter()
.map(|c: &TableConstraint| match c {
TableConstraint::Unique {
columns,
is_primary,
..
} => {
// Get primary key and/or unique indices in the schema:
let indices = columns
.iter()
.map(|pk| {
let idx = df_schema
.fields()
.iter()
.position(|item| {
item.qualified_name() == pk.value.clone()
})
.ok_or_else(|| {
DataFusionError::Execution(
"Primary key doesn't exist".to_string(),
)
})?;
Ok(idx)
})
.collect::<Result<Vec<_>>>()?;
Ok(if *is_primary {
Constraint::PrimaryKey(indices)
} else {
Constraint::Unique(indices)
})
}
TableConstraint::ForeignKey { .. } => Err(DataFusionError::Plan(
"Foreign key constraints are not currently supported".to_string(),
)),
TableConstraint::Check { .. } => Err(DataFusionError::Plan(
"Check constraints are not currently supported".to_string(),
)),
TableConstraint::Index { .. } => Err(DataFusionError::Plan(
"Indexes are not currently supported".to_string(),
)),
TableConstraint::FulltextOrSpatial { .. } => Err(DataFusionError::Plan(
"Indexes are not currently supported".to_string(),
)),
})
.collect::<Result<Vec<_>>>()?;
Ok(Constraints::new(constraints))
}
/// Check whether constraints is empty
pub fn is_empty(&self) -> bool {
self.inner.is_empty()
}
}
impl Display for Constraints {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
let pk: Vec<String> = self.inner.iter().map(|c| format!("{:?}", c)).collect();
let pk = pk.join(", ");
if !pk.is_empty() {
write!(f, " constraints=[{pk}]")
} else {
write!(f, "")
}
}
}
/// This object defines a functional dependence in the schema. A functional
/// dependence defines a relationship between determinant keys and dependent
/// columns. A determinant key is a column, or a set of columns, whose value
/// uniquely determines values of some other (dependent) columns. If two rows
/// have the same determinant key, dependent columns in these rows are
/// necessarily the same. If the determinant key is unique, the set of
/// dependent columns is equal to the entire schema and the determinant key can
/// serve as a primary key. Note that a primary key may "downgrade" into a
/// determinant key due to an operation such as a join, and this object is
/// used to track dependence relationships in such cases. For more information
/// on functional dependencies, see:
/// <https://www.scaler.com/topics/dbms/functional-dependency-in-dbms/>
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct FunctionalDependence {
// Column indices of the (possibly composite) determinant key:
pub source_indices: Vec<usize>,
// Column indices of dependent column(s):
pub target_indices: Vec<usize>,
/// Flag indicating whether one of the `source_indices` can receive NULL values.
/// For a data source, if the constraint in question is `Constraint::Unique`,
/// this flag is `true`. If the constraint in question is `Constraint::PrimaryKey`,
/// this flag is `false`.
/// Note that as the schema changes between different stages in a plan,
/// such as after LEFT JOIN or RIGHT JOIN operations, this property may
/// change.
pub nullable: bool,
// The functional dependency mode:
pub mode: Dependency,
}
/// Describes functional dependency mode.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Dependency {
Single, // A determinant key may occur only once.
Multi, // A determinant key may occur multiple times (in multiple rows).
}
impl FunctionalDependence {
// Creates a new functional dependence.
pub fn new(
source_indices: Vec<usize>,
target_indices: Vec<usize>,
nullable: bool,
) -> Self {
Self {
source_indices,
target_indices,
nullable,
// Start with the least restrictive mode by default:
mode: Dependency::Multi,
}
}
pub fn with_mode(mut self, mode: Dependency) -> Self {
self.mode = mode;
self
}
}
/// This object encapsulates all functional dependencies in a given relation.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct FunctionalDependencies {
deps: Vec<FunctionalDependence>,
}
impl FunctionalDependencies {
/// Creates an empty `FunctionalDependencies` object.
pub fn empty() -> Self {
Self { deps: vec![] }
}
/// Creates a new `FunctionalDependencies` object from a vector of
/// `FunctionalDependence` objects.
pub fn new(dependencies: Vec<FunctionalDependence>) -> Self {
Self { deps: dependencies }
}
/// Creates a new `FunctionalDependencies` object from the given constraints.
pub fn new_from_constraints(
constraints: Option<&Constraints>,
n_field: usize,
) -> Self {
if let Some(Constraints { inner: constraints }) = constraints {
// Construct dependency objects based on each individual constraint:
let dependencies = constraints
.iter()
.map(|constraint| {
// All the field indices are associated with the whole table
// since we are dealing with table level constraints:
let dependency = match constraint {
Constraint::PrimaryKey(indices) => FunctionalDependence::new(
indices.to_vec(),
(0..n_field).collect::<Vec<_>>(),
false,
),
Constraint::Unique(indices) => FunctionalDependence::new(
indices.to_vec(),
(0..n_field).collect::<Vec<_>>(),
true,
),
};
// As primary keys are guaranteed to be unique, set the
// functional dependency mode to `Dependency::Single`:
dependency.with_mode(Dependency::Single)
})
.collect::<Vec<_>>();
Self::new(dependencies)
} else {
// There is no constraint, return an empty object:
Self::empty()
}
}
pub fn with_dependency(mut self, mode: Dependency) -> Self {
self.deps.iter_mut().for_each(|item| item.mode = mode);
self
}
/// Merges the given functional dependencies with these.
pub fn extend(&mut self, other: FunctionalDependencies) {
self.deps.extend(other.deps);
}
/// Adds the `offset` value to `source_indices` and `target_indices` for
/// each functional dependency.
pub fn add_offset(&mut self, offset: usize) {
self.deps.iter_mut().for_each(
|FunctionalDependence {
source_indices,
target_indices,
..
}| {
*source_indices = add_offset_to_vec(source_indices, offset);
*target_indices = add_offset_to_vec(target_indices, offset);
},
)
}
/// Updates `source_indices` and `target_indices` of each functional
/// dependence using the index mapping given in `proj_indices`.
///
/// Assume that `proj_indices` is \[2, 5, 8\] and we have a functional
/// dependence \[5\] (`source_indices`) -> \[5, 8\] (`target_indices`).
/// In the updated schema, fields at indices \[2, 5, 8\] will transform
/// to \[0, 1, 2\]. Therefore, the resulting functional dependence will
/// be \[1\] -> \[1, 2\].
pub fn project_functional_dependencies(
&self,
proj_indices: &[usize],
// The argument `n_out` denotes the schema field length, which is needed
// to correctly associate a `Single`-mode dependence with the whole table.
n_out: usize,
) -> FunctionalDependencies {
let mut projected_func_dependencies = vec![];
for FunctionalDependence {
source_indices,
target_indices,
nullable,
mode,
} in &self.deps
{
let new_source_indices =
update_elements_with_matching_indices(source_indices, proj_indices);
let new_target_indices = if *mode == Dependency::Single {
// Associate with all of the fields in the schema:
(0..n_out).collect()
} else {
// Update associations according to projection:
update_elements_with_matching_indices(target_indices, proj_indices)
};
// All of the composite indices should still be valid after projection;
// otherwise, functional dependency cannot be propagated.
if new_source_indices.len() == source_indices.len() {
let new_func_dependence = FunctionalDependence::new(
new_source_indices,
new_target_indices,
*nullable,
)
.with_mode(*mode);
projected_func_dependencies.push(new_func_dependence);
}
}
FunctionalDependencies::new(projected_func_dependencies)
}
/// This function joins this set of functional dependencies with the `other`
/// according to the given `join_type`.
pub fn join(
&self,
other: &FunctionalDependencies,
join_type: &JoinType,
left_cols_len: usize,
) -> FunctionalDependencies {
// Get mutable copies of left and right side dependencies:
let mut right_func_dependencies = other.clone();
let mut left_func_dependencies = self.clone();
match join_type {
JoinType::Inner | JoinType::Left | JoinType::Right => {
// Add offset to right schema:
right_func_dependencies.add_offset(left_cols_len);
// Result may have multiple values, update the dependency mode:
left_func_dependencies =
left_func_dependencies.with_dependency(Dependency::Multi);
right_func_dependencies =
right_func_dependencies.with_dependency(Dependency::Multi);
if *join_type == JoinType::Left {
// Downgrade the right side, since it may have additional NULL values:
right_func_dependencies.downgrade_dependencies();
} else if *join_type == JoinType::Right {
// Downgrade the left side, since it may have additional NULL values:
left_func_dependencies.downgrade_dependencies();
}
// Combine left and right functional dependencies:
left_func_dependencies.extend(right_func_dependencies);
left_func_dependencies
}
JoinType::LeftSemi | JoinType::LeftAnti => {
// These joins preserve functional dependencies of the left side:
left_func_dependencies
}
JoinType::RightSemi | JoinType::RightAnti => {
// These joins preserve functional dependencies of the right side:
right_func_dependencies
}
JoinType::Full => {
// All of the functional dependencies are lost in a FULL join:
FunctionalDependencies::empty()
}
}
}
/// This function downgrades a functional dependency when nullability becomes
/// a possibility:
/// - If the dependency in question is UNIQUE (i.e. nullable), a new null value
/// invalidates the dependency.
/// - If the dependency in question is PRIMARY KEY (i.e. not nullable), a new
/// null value turns it into UNIQUE mode.
fn downgrade_dependencies(&mut self) {
// Delete nullable dependencies, since they are no longer valid:
self.deps.retain(|item| !item.nullable);
self.deps.iter_mut().for_each(|item| item.nullable = true);
}
/// This function ensures that functional dependencies involving uniquely
/// occuring determinant keys cover their entire table in terms of
/// dependent columns.
pub fn extend_target_indices(&mut self, n_out: usize) {
self.deps.iter_mut().for_each(
|FunctionalDependence {
mode,
target_indices,
..
}| {
// If unique, cover the whole table:
if *mode == Dependency::Single {
*target_indices = (0..n_out).collect::<Vec<_>>();
}
},
)
}
}
/// Calculates functional dependencies for aggregate output, when there is a GROUP BY expression.
pub fn aggregate_functional_dependencies(
aggr_input_schema: &DFSchema,
group_by_expr_names: &[String],
aggr_schema: &DFSchema,
) -> FunctionalDependencies {
let mut aggregate_func_dependencies = vec![];
let aggr_input_fields = aggr_input_schema.fields();
let aggr_fields = aggr_schema.fields();
// Association covers the whole table:
let target_indices = (0..aggr_schema.fields().len()).collect::<Vec<_>>();
// Get functional dependencies of the schema:
let func_dependencies = aggr_input_schema.functional_dependencies();
for FunctionalDependence {
source_indices,
nullable,
mode,
..
} in &func_dependencies.deps
{
// Keep source indices in a `HashSet` to prevent duplicate entries:
let mut new_source_indices = HashSet::new();
let source_field_names = source_indices
.iter()
.map(|&idx| aggr_input_fields[idx].qualified_name())
.collect::<Vec<_>>();
for (idx, group_by_expr_name) in group_by_expr_names.iter().enumerate() {
// When one of the input determinant expressions matches with
// the GROUP BY expression, add the index of the GROUP BY
// expression as a new determinant key:
if source_field_names.contains(group_by_expr_name) {
new_source_indices.insert(idx);
}
}
// All of the composite indices occur in the GROUP BY expression:
if new_source_indices.len() == source_indices.len() {
aggregate_func_dependencies.push(
FunctionalDependence::new(
new_source_indices.into_iter().collect(),
target_indices.clone(),
*nullable,
)
// input uniqueness stays the same when GROUP BY matches with input functional dependence determinants
.with_mode(*mode),
);
}
}
// If we have a single GROUP BY key, we can guarantee uniqueness after
// aggregation:
if group_by_expr_names.len() == 1 {
// If `source_indices` contain 0, delete this functional dependency
// as it will be added anyway with mode `Dependency::Single`:
if let Some(idx) = aggregate_func_dependencies
.iter()
.position(|item| item.source_indices.contains(&0))
{
// Delete the functional dependency that contains zeroth idx:
aggregate_func_dependencies.remove(idx);
}
// Add a new functional dependency associated with the whole table:
aggregate_func_dependencies.push(
// Use nullable property of the group by expression
FunctionalDependence::new(
vec![0],
target_indices,
aggr_fields[0].is_nullable(),
)
.with_mode(Dependency::Single),
);
}
FunctionalDependencies::new(aggregate_func_dependencies)
}
/// Returns target indices, for the determinant keys that are inside
/// group by expressions.
pub fn get_target_functional_dependencies(
schema: &DFSchema,
group_by_expr_names: &[String],
) -> Option<Vec<usize>> {
let mut combined_target_indices = HashSet::new();
let dependencies = schema.functional_dependencies();
let field_names = schema
.fields()
.iter()
.map(|item| item.qualified_name())
.collect::<Vec<_>>();
for FunctionalDependence {
source_indices,
target_indices,
..
} in &dependencies.deps
{
let source_key_names = source_indices
.iter()
.map(|id_key_idx| field_names[*id_key_idx].clone())
.collect::<Vec<_>>();
// If the GROUP BY expression contains a determinant key, we can use
// the associated fields after aggregation even if they are not part
// of the GROUP BY expression.
if source_key_names
.iter()
.all(|source_key_name| group_by_expr_names.contains(source_key_name))
{
combined_target_indices.extend(target_indices.iter());
}
}
(!combined_target_indices.is_empty())
.then_some(combined_target_indices.iter().cloned().collect::<Vec<_>>())
}
/// Updates entries inside the `entries` vector with their corresponding
/// indices inside the `proj_indices` vector.
fn update_elements_with_matching_indices(
entries: &[usize],
proj_indices: &[usize],
) -> Vec<usize> {
entries
.iter()
.filter_map(|val| proj_indices.iter().position(|proj_idx| proj_idx == val))
.collect()
}
/// Adds `offset` value to each entry inside `in_data`.
fn add_offset_to_vec<T: Copy + std::ops::Add<Output = T>>(
in_data: &[T],
offset: T,
) -> Vec<T> {
in_data.iter().map(|&item| item + offset).collect()
}