1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! This module provides common traits for visiting or rewriting tree
//! data structures easily.
use std::sync::Arc;
use crate::Result;
/// Defines a visitable and rewriteable a tree node. This trait is
/// implemented for plans ([`ExecutionPlan`] and [`LogicalPlan`]) as
/// well as expression trees ([`PhysicalExpr`], [`Expr`]) in
/// DataFusion
///
/// <!-- Since these are in the datafusion-common crate, can't use intra doc links) -->
/// [`ExecutionPlan`]: https://docs.rs/datafusion/latest/datafusion/physical_plan/trait.ExecutionPlan.html
/// [`PhysicalExpr`]: https://docs.rs/datafusion/latest/datafusion/physical_plan/trait.PhysicalExpr.html
/// [`LogicalPlan`]: https://docs.rs/datafusion-expr/latest/datafusion_expr/logical_plan/enum.LogicalPlan.html
/// [`Expr`]: https://docs.rs/datafusion-expr/latest/datafusion_expr/expr/enum.Expr.html
pub trait TreeNode: Sized {
/// Use preorder to iterate the node on the tree so that we can
/// stop fast for some cases.
///
/// The `op` closure can be used to collect some info from the
/// tree node or do some checking for the tree node.
fn apply<F>(&self, op: &mut F) -> Result<VisitRecursion>
where
F: FnMut(&Self) -> Result<VisitRecursion>,
{
match op(self)? {
VisitRecursion::Continue => {}
// If the recursion should skip, do not apply to its children. And let the recursion continue
VisitRecursion::Skip => return Ok(VisitRecursion::Continue),
// If the recursion should stop, do not apply to its children
VisitRecursion::Stop => return Ok(VisitRecursion::Stop),
};
self.apply_children(&mut |node| node.apply(op))
}
/// Visit the tree node using the given [TreeNodeVisitor]
/// It performs a depth first walk of an node and its children.
///
/// For an node tree such as
/// ```text
/// ParentNode
/// left: ChildNode1
/// right: ChildNode2
/// ```
///
/// The nodes are visited using the following order
/// ```text
/// pre_visit(ParentNode)
/// pre_visit(ChildNode1)
/// post_visit(ChildNode1)
/// pre_visit(ChildNode2)
/// post_visit(ChildNode2)
/// post_visit(ParentNode)
/// ```
///
/// If an Err result is returned, recursion is stopped immediately
///
/// If [`VisitRecursion::Stop`] is returned on a call to pre_visit, no
/// children of that node will be visited, nor is post_visit
/// called on that node. Details see [`TreeNodeVisitor`]
///
/// If using the default [`TreeNodeVisitor::post_visit`] that does
/// nothing, [`Self::apply`] should be preferred.
fn visit<V: TreeNodeVisitor<N = Self>>(
&self,
visitor: &mut V,
) -> Result<VisitRecursion> {
match visitor.pre_visit(self)? {
VisitRecursion::Continue => {}
// If the recursion should skip, do not apply to its children. And let the recursion continue
VisitRecursion::Skip => return Ok(VisitRecursion::Continue),
// If the recursion should stop, do not apply to its children
VisitRecursion::Stop => return Ok(VisitRecursion::Stop),
};
match self.apply_children(&mut |node| node.visit(visitor))? {
VisitRecursion::Continue => {}
// If the recursion should skip, do not apply to its children. And let the recursion continue
VisitRecursion::Skip => return Ok(VisitRecursion::Continue),
// If the recursion should stop, do not apply to its children
VisitRecursion::Stop => return Ok(VisitRecursion::Stop),
}
visitor.post_visit(self)
}
/// Convenience utils for writing optimizers rule: recursively apply the given `op` to the node tree.
/// When `op` does not apply to a given node, it is left unchanged.
/// The default tree traversal direction is transform_up(Postorder Traversal).
fn transform<F>(self, op: &F) -> Result<Self>
where
F: Fn(Self) -> Result<Transformed<Self>>,
{
self.transform_up(op)
}
/// Convenience utils for writing optimizers rule: recursively apply the given 'op' to the node and all of its
/// children(Preorder Traversal).
/// When the `op` does not apply to a given node, it is left unchanged.
fn transform_down<F>(self, op: &F) -> Result<Self>
where
F: Fn(Self) -> Result<Transformed<Self>>,
{
let after_op = op(self)?.into();
after_op.map_children(|node| node.transform_down(op))
}
/// Convenience utils for writing optimizers rule: recursively apply the given 'op' first to all of its
/// children and then itself(Postorder Traversal).
/// When the `op` does not apply to a given node, it is left unchanged.
fn transform_up<F>(self, op: &F) -> Result<Self>
where
F: Fn(Self) -> Result<Transformed<Self>>,
{
let after_op_children = self.map_children(|node| node.transform_up(op))?;
let new_node = op(after_op_children)?.into();
Ok(new_node)
}
/// Transform the tree node using the given [TreeNodeRewriter]
/// It performs a depth first walk of an node and its children.
///
/// For an node tree such as
/// ```text
/// ParentNode
/// left: ChildNode1
/// right: ChildNode2
/// ```
///
/// The nodes are visited using the following order
/// ```text
/// pre_visit(ParentNode)
/// pre_visit(ChildNode1)
/// mutate(ChildNode1)
/// pre_visit(ChildNode2)
/// mutate(ChildNode2)
/// mutate(ParentNode)
/// ```
///
/// If an Err result is returned, recursion is stopped immediately
///
/// If [`false`] is returned on a call to pre_visit, no
/// children of that node will be visited, nor is mutate
/// called on that node
///
/// If using the default [`TreeNodeRewriter::pre_visit`] which
/// returns `true`, [`Self::transform`] should be preferred.
fn rewrite<R: TreeNodeRewriter<N = Self>>(self, rewriter: &mut R) -> Result<Self> {
let need_mutate = match rewriter.pre_visit(&self)? {
RewriteRecursion::Mutate => return rewriter.mutate(self),
RewriteRecursion::Stop => return Ok(self),
RewriteRecursion::Continue => true,
RewriteRecursion::Skip => false,
};
let after_op_children = self.map_children(|node| node.rewrite(rewriter))?;
// now rewrite this node itself
if need_mutate {
rewriter.mutate(after_op_children)
} else {
Ok(after_op_children)
}
}
/// Apply the closure `F` to the node's children
fn apply_children<F>(&self, op: &mut F) -> Result<VisitRecursion>
where
F: FnMut(&Self) -> Result<VisitRecursion>;
/// Apply transform `F` to the node's children, the transform `F` might have a direction(Preorder or Postorder)
fn map_children<F>(self, transform: F) -> Result<Self>
where
F: FnMut(Self) -> Result<Self>;
}
/// Implements the [visitor
/// pattern](https://en.wikipedia.org/wiki/Visitor_pattern) for recursively walking [`TreeNode`]s.
///
/// [`TreeNodeVisitor`] allows keeping the algorithms
/// separate from the code to traverse the structure of the `TreeNode`
/// tree and makes it easier to add new types of tree node and
/// algorithms.
///
/// When passed to[`TreeNode::visit`], [`TreeNodeVisitor::pre_visit`]
/// and [`TreeNodeVisitor::post_visit`] are invoked recursively
/// on an node tree.
///
/// If an [`Err`] result is returned, recursion is stopped
/// immediately.
///
/// If [`VisitRecursion::Stop`] is returned on a call to pre_visit, no
/// children of that tree node are visited, nor is post_visit
/// called on that tree node
///
/// If [`VisitRecursion::Stop`] is returned on a call to post_visit, no
/// siblings of that tree node are visited, nor is post_visit
/// called on its parent tree node
///
/// If [`VisitRecursion::Skip`] is returned on a call to pre_visit, no
/// children of that tree node are visited.
pub trait TreeNodeVisitor: Sized {
/// The node type which is visitable.
type N: TreeNode;
/// Invoked before any children of `node` are visited.
fn pre_visit(&mut self, node: &Self::N) -> Result<VisitRecursion>;
/// Invoked after all children of `node` are visited. Default
/// implementation does nothing.
fn post_visit(&mut self, _node: &Self::N) -> Result<VisitRecursion> {
Ok(VisitRecursion::Continue)
}
}
/// Trait for potentially recursively transform an [`TreeNode`] node
/// tree. When passed to `TreeNode::rewrite`, `TreeNodeRewriter::mutate` is
/// invoked recursively on all nodes of a tree.
pub trait TreeNodeRewriter: Sized {
/// The node type which is rewritable.
type N: TreeNode;
/// Invoked before (Preorder) any children of `node` are rewritten /
/// visited. Default implementation returns `Ok(Recursion::Continue)`
fn pre_visit(&mut self, _node: &Self::N) -> Result<RewriteRecursion> {
Ok(RewriteRecursion::Continue)
}
/// Invoked after (Postorder) all children of `node` have been mutated and
/// returns a potentially modified node.
fn mutate(&mut self, node: Self::N) -> Result<Self::N>;
}
/// Controls how the [`TreeNode`] recursion should proceed for [`TreeNode::rewrite`].
#[derive(Debug)]
pub enum RewriteRecursion {
/// Continue rewrite this node tree.
Continue,
/// Call 'op' immediately and return.
Mutate,
/// Do not rewrite the children of this node.
Stop,
/// Keep recursive but skip apply op on this node
Skip,
}
/// Controls how the [`TreeNode`] recursion should proceed for [`TreeNode::visit`].
#[derive(Debug)]
pub enum VisitRecursion {
/// Continue the visit to this node tree.
Continue,
/// Keep recursive but skip applying op on the children
Skip,
/// Stop the visit to this node tree.
Stop,
}
pub enum Transformed<T> {
/// The item was transformed / rewritten somehow
Yes(T),
/// The item was not transformed
No(T),
}
impl<T> Transformed<T> {
pub fn into(self) -> T {
match self {
Transformed::Yes(t) => t,
Transformed::No(t) => t,
}
}
pub fn into_pair(self) -> (T, bool) {
match self {
Transformed::Yes(t) => (t, true),
Transformed::No(t) => (t, false),
}
}
}
/// Helper trait for implementing [`TreeNode`] that have children stored as Arc's
///
/// If some trait object, such as `dyn T`, implements this trait,
/// its related `Arc<dyn T>` will automatically implement [`TreeNode`]
pub trait DynTreeNode {
/// Returns all children of the specified TreeNode
fn arc_children(&self) -> Vec<Arc<Self>>;
/// construct a new self with the specified children
fn with_new_arc_children(
&self,
arc_self: Arc<Self>,
new_children: Vec<Arc<Self>>,
) -> Result<Arc<Self>>;
}
/// Blanket implementation for Arc for any tye that implements
/// [`DynTreeNode`] (such as [`Arc<dyn PhysicalExpr>`])
impl<T: DynTreeNode + ?Sized> TreeNode for Arc<T> {
fn apply_children<F>(&self, op: &mut F) -> Result<VisitRecursion>
where
F: FnMut(&Self) -> Result<VisitRecursion>,
{
for child in self.arc_children() {
match op(&child)? {
VisitRecursion::Continue => {}
VisitRecursion::Skip => return Ok(VisitRecursion::Continue),
VisitRecursion::Stop => return Ok(VisitRecursion::Stop),
}
}
Ok(VisitRecursion::Continue)
}
fn map_children<F>(self, transform: F) -> Result<Self>
where
F: FnMut(Self) -> Result<Self>,
{
let children = self.arc_children();
if !children.is_empty() {
let new_children: Result<Vec<_>> =
children.into_iter().map(transform).collect();
let arc_self = Arc::clone(&self);
self.with_new_arc_children(arc_self, new_children?)
} else {
Ok(self)
}
}
}