pub mod expr;
pub mod memory;
pub mod proxy;
use crate::error::{_internal_datafusion_err, _internal_err};
use crate::{arrow_datafusion_err, DataFusionError, Result, ScalarValue};
use arrow::array::{ArrayRef, PrimitiveArray};
use arrow::buffer::OffsetBuffer;
use arrow::compute;
use arrow::compute::{partition, SortColumn, SortOptions};
use arrow::datatypes::{Field, SchemaRef, UInt32Type};
use arrow::record_batch::RecordBatch;
use arrow_array::{
Array, FixedSizeListArray, LargeListArray, ListArray, RecordBatchOptions,
};
use arrow_schema::DataType;
use sqlparser::ast::Ident;
use sqlparser::dialect::GenericDialect;
use sqlparser::parser::Parser;
use std::borrow::{Borrow, Cow};
use std::cmp::Ordering;
use std::collections::HashSet;
use std::ops::Range;
use std::sync::Arc;
pub fn project_schema(
schema: &SchemaRef,
projection: Option<&Vec<usize>>,
) -> Result<SchemaRef> {
let schema = match projection {
Some(columns) => Arc::new(schema.project(columns)?),
None => Arc::clone(schema),
};
Ok(schema)
}
pub fn get_row_at_idx(columns: &[ArrayRef], idx: usize) -> Result<Vec<ScalarValue>> {
columns
.iter()
.map(|arr| ScalarValue::try_from_array(arr, idx))
.collect()
}
pub fn get_record_batch_at_indices(
record_batch: &RecordBatch,
indices: &PrimitiveArray<UInt32Type>,
) -> Result<RecordBatch> {
let new_columns = get_arrayref_at_indices(record_batch.columns(), indices)?;
RecordBatch::try_new_with_options(
record_batch.schema(),
new_columns,
&RecordBatchOptions::new().with_row_count(Some(indices.len())),
)
.map_err(|e| arrow_datafusion_err!(e))
}
pub fn compare_rows(
x: &[ScalarValue],
y: &[ScalarValue],
sort_options: &[SortOptions],
) -> Result<Ordering> {
let zip_it = x.iter().zip(y.iter()).zip(sort_options.iter());
for ((lhs, rhs), sort_options) in zip_it {
let result = match (lhs.is_null(), rhs.is_null(), sort_options.nulls_first) {
(true, false, false) | (false, true, true) => Ordering::Greater,
(true, false, true) | (false, true, false) => Ordering::Less,
(false, false, _) => if sort_options.descending {
rhs.partial_cmp(lhs)
} else {
lhs.partial_cmp(rhs)
}
.ok_or_else(|| {
_internal_datafusion_err!("Column array shouldn't be empty")
})?,
(true, true, _) => continue,
};
if result != Ordering::Equal {
return Ok(result);
}
}
Ok(Ordering::Equal)
}
pub fn bisect<const SIDE: bool>(
item_columns: &[ArrayRef],
target: &[ScalarValue],
sort_options: &[SortOptions],
) -> Result<usize> {
let low: usize = 0;
let high: usize = item_columns
.first()
.ok_or_else(|| {
DataFusionError::Internal("Column array shouldn't be empty".to_string())
})?
.len();
let compare_fn = |current: &[ScalarValue], target: &[ScalarValue]| {
let cmp = compare_rows(current, target, sort_options)?;
Ok(if SIDE { cmp.is_lt() } else { cmp.is_le() })
};
find_bisect_point(item_columns, target, compare_fn, low, high)
}
pub fn find_bisect_point<F>(
item_columns: &[ArrayRef],
target: &[ScalarValue],
compare_fn: F,
mut low: usize,
mut high: usize,
) -> Result<usize>
where
F: Fn(&[ScalarValue], &[ScalarValue]) -> Result<bool>,
{
while low < high {
let mid = ((high - low) / 2) + low;
let val = get_row_at_idx(item_columns, mid)?;
if compare_fn(&val, target)? {
low = mid + 1;
} else {
high = mid;
}
}
Ok(low)
}
pub fn linear_search<const SIDE: bool>(
item_columns: &[ArrayRef],
target: &[ScalarValue],
sort_options: &[SortOptions],
) -> Result<usize> {
let low: usize = 0;
let high: usize = item_columns
.first()
.ok_or_else(|| {
DataFusionError::Internal("Column array shouldn't be empty".to_string())
})?
.len();
let compare_fn = |current: &[ScalarValue], target: &[ScalarValue]| {
let cmp = compare_rows(current, target, sort_options)?;
Ok(if SIDE { cmp.is_lt() } else { cmp.is_le() })
};
search_in_slice(item_columns, target, compare_fn, low, high)
}
pub fn search_in_slice<F>(
item_columns: &[ArrayRef],
target: &[ScalarValue],
compare_fn: F,
mut low: usize,
high: usize,
) -> Result<usize>
where
F: Fn(&[ScalarValue], &[ScalarValue]) -> Result<bool>,
{
while low < high {
let val = get_row_at_idx(item_columns, low)?;
if !compare_fn(&val, target)? {
break;
}
low += 1;
}
Ok(low)
}
pub fn evaluate_partition_ranges(
num_rows: usize,
partition_columns: &[SortColumn],
) -> Result<Vec<Range<usize>>> {
Ok(if partition_columns.is_empty() {
vec![Range {
start: 0,
end: num_rows,
}]
} else {
let cols: Vec<_> = partition_columns
.iter()
.map(|x| Arc::clone(&x.values))
.collect();
partition(&cols)?.ranges()
})
}
pub fn quote_identifier(s: &str) -> Cow<str> {
if needs_quotes(s) {
Cow::Owned(format!("\"{}\"", s.replace('"', "\"\"")))
} else {
Cow::Borrowed(s)
}
}
fn needs_quotes(s: &str) -> bool {
let mut chars = s.chars();
if let Some(first_char) = chars.next() {
if !(first_char.is_ascii_lowercase() || first_char == '_') {
return true;
}
}
!chars.all(|c| c.is_ascii_lowercase() || c.is_ascii_digit() || c == '_')
}
pub(crate) fn parse_identifiers(s: &str) -> Result<Vec<Ident>> {
let dialect = GenericDialect;
let mut parser = Parser::new(&dialect).try_with_sql(s)?;
let idents = parser.parse_multipart_identifier()?;
Ok(idents)
}
pub fn get_arrayref_at_indices(
arrays: &[ArrayRef],
indices: &PrimitiveArray<UInt32Type>,
) -> Result<Vec<ArrayRef>> {
arrays
.iter()
.map(|array| {
compute::take(
array.as_ref(),
indices,
None, )
.map_err(|e| arrow_datafusion_err!(e))
})
.collect()
}
pub(crate) fn parse_identifiers_normalized(s: &str, ignore_case: bool) -> Vec<String> {
parse_identifiers(s)
.unwrap_or_default()
.into_iter()
.map(|id| match id.quote_style {
Some(_) => id.value,
None if ignore_case => id.value,
_ => id.value.to_ascii_lowercase(),
})
.collect::<Vec<_>>()
}
pub fn get_at_indices<T: Clone, I: Borrow<usize>>(
items: &[T],
indices: impl IntoIterator<Item = I>,
) -> Result<Vec<T>> {
indices
.into_iter()
.map(|idx| items.get(*idx.borrow()).cloned())
.collect::<Option<Vec<T>>>()
.ok_or_else(|| {
DataFusionError::Execution(
"Expects indices to be in the range of searched vector".to_string(),
)
})
}
pub fn longest_consecutive_prefix<T: Borrow<usize>>(
sequence: impl IntoIterator<Item = T>,
) -> usize {
let mut count = 0;
for item in sequence {
if !count.eq(item.borrow()) {
break;
}
count += 1;
}
count
}
pub fn array_into_list_array_nullable(arr: ArrayRef) -> ListArray {
array_into_list_array(arr, true)
}
pub fn array_into_list_array(arr: ArrayRef, nullable: bool) -> ListArray {
let offsets = OffsetBuffer::from_lengths([arr.len()]);
ListArray::new(
Arc::new(Field::new_list_field(arr.data_type().to_owned(), nullable)),
offsets,
arr,
None,
)
}
pub fn array_into_large_list_array(arr: ArrayRef) -> LargeListArray {
let offsets = OffsetBuffer::from_lengths([arr.len()]);
LargeListArray::new(
Arc::new(Field::new_list_field(arr.data_type().to_owned(), true)),
offsets,
arr,
None,
)
}
pub fn array_into_fixed_size_list_array(
arr: ArrayRef,
list_size: usize,
) -> FixedSizeListArray {
let list_size = list_size as i32;
FixedSizeListArray::new(
Arc::new(Field::new_list_field(arr.data_type().to_owned(), true)),
list_size,
arr,
None,
)
}
pub fn arrays_into_list_array(
arr: impl IntoIterator<Item = ArrayRef>,
) -> Result<ListArray> {
let arr = arr.into_iter().collect::<Vec<_>>();
if arr.is_empty() {
return _internal_err!("Cannot wrap empty array into list array");
}
let lens = arr.iter().map(|x| x.len()).collect::<Vec<_>>();
let data_type = arr[0].data_type().to_owned();
let values = arr.iter().map(|x| x.as_ref()).collect::<Vec<_>>();
Ok(ListArray::new(
Arc::new(Field::new_list_field(data_type, true)),
OffsetBuffer::from_lengths(lens),
arrow::compute::concat(values.as_slice())?,
None,
))
}
pub fn base_type(data_type: &DataType) -> DataType {
match data_type {
DataType::List(field)
| DataType::LargeList(field)
| DataType::FixedSizeList(field, _) => base_type(field.data_type()),
_ => data_type.to_owned(),
}
}
pub fn coerced_type_with_base_type_only(
data_type: &DataType,
base_type: &DataType,
) -> DataType {
match data_type {
DataType::List(field) | DataType::FixedSizeList(field, _) => {
let field_type =
coerced_type_with_base_type_only(field.data_type(), base_type);
DataType::List(Arc::new(Field::new(
field.name(),
field_type,
field.is_nullable(),
)))
}
DataType::LargeList(field) => {
let field_type =
coerced_type_with_base_type_only(field.data_type(), base_type);
DataType::LargeList(Arc::new(Field::new(
field.name(),
field_type,
field.is_nullable(),
)))
}
_ => base_type.clone(),
}
}
pub fn coerced_fixed_size_list_to_list(data_type: &DataType) -> DataType {
match data_type {
DataType::List(field) | DataType::FixedSizeList(field, _) => {
let field_type = coerced_fixed_size_list_to_list(field.data_type());
DataType::List(Arc::new(Field::new(
field.name(),
field_type,
field.is_nullable(),
)))
}
DataType::LargeList(field) => {
let field_type = coerced_fixed_size_list_to_list(field.data_type());
DataType::LargeList(Arc::new(Field::new(
field.name(),
field_type,
field.is_nullable(),
)))
}
_ => data_type.clone(),
}
}
pub fn list_ndims(data_type: &DataType) -> u64 {
match data_type {
DataType::List(field)
| DataType::LargeList(field)
| DataType::FixedSizeList(field, _) => 1 + list_ndims(field.data_type()),
_ => 0,
}
}
pub mod datafusion_strsim {
use std::cmp::min;
use std::str::Chars;
struct StringWrapper<'a>(&'a str);
impl<'a, 'b> IntoIterator for &'a StringWrapper<'b> {
type Item = char;
type IntoIter = Chars<'b>;
fn into_iter(self) -> Self::IntoIter {
self.0.chars()
}
}
fn generic_levenshtein<'a, 'b, Iter1, Iter2, Elem1, Elem2>(
a: &'a Iter1,
b: &'b Iter2,
) -> usize
where
&'a Iter1: IntoIterator<Item = Elem1>,
&'b Iter2: IntoIterator<Item = Elem2>,
Elem1: PartialEq<Elem2>,
{
let b_len = b.into_iter().count();
if a.into_iter().next().is_none() {
return b_len;
}
let mut cache: Vec<usize> = (1..b_len + 1).collect();
let mut result = 0;
for (i, a_elem) in a.into_iter().enumerate() {
result = i + 1;
let mut distance_b = i;
for (j, b_elem) in b.into_iter().enumerate() {
let cost = if a_elem == b_elem { 0usize } else { 1usize };
let distance_a = distance_b + cost;
distance_b = cache[j];
result = min(result + 1, min(distance_a, distance_b + 1));
cache[j] = result;
}
}
result
}
pub fn levenshtein(a: &str, b: &str) -> usize {
generic_levenshtein(&StringWrapper(a), &StringWrapper(b))
}
}
pub fn merge_and_order_indices<T: Borrow<usize>, S: Borrow<usize>>(
first: impl IntoIterator<Item = T>,
second: impl IntoIterator<Item = S>,
) -> Vec<usize> {
let mut result: Vec<_> = first
.into_iter()
.map(|e| *e.borrow())
.chain(second.into_iter().map(|e| *e.borrow()))
.collect::<HashSet<_>>()
.into_iter()
.collect();
result.sort();
result
}
pub fn set_difference<T: Borrow<usize>, S: Borrow<usize>>(
first: impl IntoIterator<Item = T>,
second: impl IntoIterator<Item = S>,
) -> Vec<usize> {
let set: HashSet<_> = second.into_iter().map(|e| *e.borrow()).collect();
first
.into_iter()
.map(|e| *e.borrow())
.filter(|e| !set.contains(e))
.collect()
}
pub fn is_sorted<T: Borrow<usize>>(sequence: impl IntoIterator<Item = T>) -> bool {
let mut previous = 0;
for item in sequence.into_iter() {
let current = *item.borrow();
if current < previous {
return false;
}
previous = current;
}
true
}
pub fn find_indices<T: PartialEq, S: Borrow<T>>(
items: &[T],
targets: impl IntoIterator<Item = S>,
) -> Result<Vec<usize>> {
targets
.into_iter()
.map(|target| items.iter().position(|e| target.borrow().eq(e)))
.collect::<Option<_>>()
.ok_or_else(|| DataFusionError::Execution("Target not found".to_string()))
}
pub fn transpose<T>(original: Vec<Vec<T>>) -> Vec<Vec<T>> {
match original.as_slice() {
[] => vec![],
[first, ..] => {
let mut result = (0..first.len()).map(|_| vec![]).collect::<Vec<_>>();
for row in original {
for (item, transposed_row) in row.into_iter().zip(&mut result) {
transposed_row.push(item);
}
}
result
}
}
}
#[cfg(test)]
mod tests {
use crate::ScalarValue::Null;
use arrow::array::Float64Array;
use super::*;
#[test]
fn test_bisect_linear_left_and_right() -> Result<()> {
let arrays: Vec<ArrayRef> = vec![
Arc::new(Float64Array::from(vec![5.0, 7.0, 8.0, 9., 10.])),
Arc::new(Float64Array::from(vec![2.0, 3.0, 3.0, 4.0, 5.0])),
Arc::new(Float64Array::from(vec![5.0, 7.0, 8.0, 10., 11.0])),
Arc::new(Float64Array::from(vec![15.0, 13.0, 8.0, 5., 0.0])),
];
let search_tuple: Vec<ScalarValue> = vec![
ScalarValue::Float64(Some(8.0)),
ScalarValue::Float64(Some(3.0)),
ScalarValue::Float64(Some(8.0)),
ScalarValue::Float64(Some(8.0)),
];
let ords = [
SortOptions {
descending: false,
nulls_first: true,
},
SortOptions {
descending: false,
nulls_first: true,
},
SortOptions {
descending: false,
nulls_first: true,
},
SortOptions {
descending: true,
nulls_first: true,
},
];
let res = bisect::<true>(&arrays, &search_tuple, &ords)?;
assert_eq!(res, 2);
let res = bisect::<false>(&arrays, &search_tuple, &ords)?;
assert_eq!(res, 3);
let res = linear_search::<true>(&arrays, &search_tuple, &ords)?;
assert_eq!(res, 2);
let res = linear_search::<false>(&arrays, &search_tuple, &ords)?;
assert_eq!(res, 3);
Ok(())
}
#[test]
fn vector_ord() {
assert!(vec![1, 0, 0, 0, 0, 0, 0, 1] < vec![1, 0, 0, 0, 0, 0, 0, 2]);
assert!(vec![1, 0, 0, 0, 0, 0, 1, 1] > vec![1, 0, 0, 0, 0, 0, 0, 2]);
assert!(
vec![
ScalarValue::Int32(Some(2)),
Null,
ScalarValue::Int32(Some(0)),
] < vec![
ScalarValue::Int32(Some(2)),
Null,
ScalarValue::Int32(Some(1)),
]
);
assert!(
vec![
ScalarValue::Int32(Some(2)),
ScalarValue::Int32(None),
ScalarValue::Int32(Some(0)),
] < vec![
ScalarValue::Int32(Some(2)),
ScalarValue::Int32(None),
ScalarValue::Int32(Some(1)),
]
);
}
#[test]
fn ord_same_type() {
assert!((ScalarValue::Int32(Some(2)) < ScalarValue::Int32(Some(3))));
}
#[test]
fn test_bisect_linear_left_and_right_diff_sort() -> Result<()> {
let arrays: Vec<ArrayRef> =
vec![Arc::new(Float64Array::from(vec![4.0, 3.0, 2.0, 1.0, 0.0]))];
let search_tuple: Vec<ScalarValue> = vec![ScalarValue::Float64(Some(4.0))];
let ords = [SortOptions {
descending: true,
nulls_first: true,
}];
let res = bisect::<true>(&arrays, &search_tuple, &ords)?;
assert_eq!(res, 0);
let res = linear_search::<true>(&arrays, &search_tuple, &ords)?;
assert_eq!(res, 0);
let arrays: Vec<ArrayRef> =
vec![Arc::new(Float64Array::from(vec![4.0, 3.0, 2.0, 1.0, 0.0]))];
let search_tuple: Vec<ScalarValue> = vec![ScalarValue::Float64(Some(4.0))];
let ords = [SortOptions {
descending: true,
nulls_first: true,
}];
let res = bisect::<false>(&arrays, &search_tuple, &ords)?;
assert_eq!(res, 1);
let res = linear_search::<false>(&arrays, &search_tuple, &ords)?;
assert_eq!(res, 1);
let arrays: Vec<ArrayRef> =
vec![Arc::new(Float64Array::from(vec![5.0, 7.0, 8.0, 9., 10.]))];
let search_tuple: Vec<ScalarValue> = vec![ScalarValue::Float64(Some(7.0))];
let ords = [SortOptions {
descending: false,
nulls_first: true,
}];
let res = bisect::<true>(&arrays, &search_tuple, &ords)?;
assert_eq!(res, 1);
let res = linear_search::<true>(&arrays, &search_tuple, &ords)?;
assert_eq!(res, 1);
let arrays: Vec<ArrayRef> =
vec![Arc::new(Float64Array::from(vec![5.0, 7.0, 8.0, 9., 10.]))];
let search_tuple: Vec<ScalarValue> = vec![ScalarValue::Float64(Some(7.0))];
let ords = [SortOptions {
descending: false,
nulls_first: true,
}];
let res = bisect::<false>(&arrays, &search_tuple, &ords)?;
assert_eq!(res, 2);
let res = linear_search::<false>(&arrays, &search_tuple, &ords)?;
assert_eq!(res, 2);
let arrays: Vec<ArrayRef> = vec![
Arc::new(Float64Array::from(vec![5.0, 7.0, 8.0, 8.0, 9., 10.])),
Arc::new(Float64Array::from(vec![10.0, 9.0, 8.0, 7.5, 7., 6.])),
];
let search_tuple: Vec<ScalarValue> = vec![
ScalarValue::Float64(Some(8.0)),
ScalarValue::Float64(Some(8.0)),
];
let ords = [
SortOptions {
descending: false,
nulls_first: true,
},
SortOptions {
descending: true,
nulls_first: true,
},
];
let res = bisect::<false>(&arrays, &search_tuple, &ords)?;
assert_eq!(res, 3);
let res = linear_search::<false>(&arrays, &search_tuple, &ords)?;
assert_eq!(res, 3);
let res = bisect::<true>(&arrays, &search_tuple, &ords)?;
assert_eq!(res, 2);
let res = linear_search::<true>(&arrays, &search_tuple, &ords)?;
assert_eq!(res, 2);
Ok(())
}
#[test]
fn test_evaluate_partition_ranges() -> Result<()> {
let arrays: Vec<ArrayRef> = vec![
Arc::new(Float64Array::from(vec![1.0, 1.0, 1.0, 2.0, 2.0, 2.0])),
Arc::new(Float64Array::from(vec![4.0, 4.0, 3.0, 2.0, 1.0, 1.0])),
];
let n_row = arrays[0].len();
let options: Vec<SortOptions> = vec![
SortOptions {
descending: false,
nulls_first: false,
},
SortOptions {
descending: true,
nulls_first: false,
},
];
let sort_columns = arrays
.into_iter()
.zip(options)
.map(|(values, options)| SortColumn {
values,
options: Some(options),
})
.collect::<Vec<_>>();
let ranges = evaluate_partition_ranges(n_row, &sort_columns)?;
assert_eq!(ranges.len(), 4);
assert_eq!(ranges[0], Range { start: 0, end: 2 });
assert_eq!(ranges[1], Range { start: 2, end: 3 });
assert_eq!(ranges[2], Range { start: 3, end: 4 });
assert_eq!(ranges[3], Range { start: 4, end: 6 });
Ok(())
}
#[test]
fn test_quote_identifier() -> Result<()> {
let cases = vec![
("foo", r#"foo"#),
("_foo", r#"_foo"#),
("foo_bar", r#"foo_bar"#),
("foo-bar", r#""foo-bar""#),
("foo.bar", r#""foo.bar""#),
("Foo", r#""Foo""#),
("Foo.Bar", r#""Foo.Bar""#),
("test1", r#"test1"#),
("1test", r#""1test""#),
];
for (identifier, quoted_identifier) in cases {
println!("input: \n{identifier}\nquoted_identifier:\n{quoted_identifier}");
assert_eq!(quote_identifier(identifier), quoted_identifier);
let quote_style = if quoted_identifier.starts_with('"') {
Some('"')
} else {
None
};
let expected_parsed = vec![Ident {
value: identifier.to_string(),
quote_style,
}];
assert_eq!(
parse_identifiers(quoted_identifier).unwrap(),
expected_parsed
);
}
Ok(())
}
#[test]
fn test_get_arrayref_at_indices() -> Result<()> {
let arrays: Vec<ArrayRef> = vec![
Arc::new(Float64Array::from(vec![5.0, 7.0, 8.0, 9., 10.])),
Arc::new(Float64Array::from(vec![2.0, 3.0, 3.0, 4.0, 5.0])),
Arc::new(Float64Array::from(vec![5.0, 7.0, 8.0, 10., 11.0])),
Arc::new(Float64Array::from(vec![15.0, 13.0, 8.0, 5., 0.0])),
];
let row_indices_vec: Vec<Vec<u32>> = vec![
vec![0, 1],
vec![0, 2],
vec![1, 3],
vec![2, 4],
];
for row_indices in row_indices_vec {
let indices = PrimitiveArray::from_iter_values(row_indices.iter().cloned());
let chunk = get_arrayref_at_indices(&arrays, &indices)?;
for (arr_orig, arr_chunk) in arrays.iter().zip(&chunk) {
for (idx, orig_idx) in row_indices.iter().enumerate() {
let res1 = ScalarValue::try_from_array(arr_orig, *orig_idx as usize)?;
let res2 = ScalarValue::try_from_array(arr_chunk, idx)?;
assert_eq!(res1, res2);
}
}
}
Ok(())
}
#[test]
fn test_get_at_indices() -> Result<()> {
let in_vec = vec![1, 2, 3, 4, 5, 6, 7];
assert_eq!(get_at_indices(&in_vec, [0, 2])?, vec![1, 3]);
assert_eq!(get_at_indices(&in_vec, [4, 2])?, vec![5, 3]);
assert!(get_at_indices(&in_vec, [7]).is_err());
Ok(())
}
#[test]
fn test_longest_consecutive_prefix() {
assert_eq!(longest_consecutive_prefix([0, 3, 4]), 1);
assert_eq!(longest_consecutive_prefix([0, 1, 3, 4]), 2);
assert_eq!(longest_consecutive_prefix([0, 1, 2, 3, 4]), 5);
assert_eq!(longest_consecutive_prefix([1, 2, 3, 4]), 0);
}
#[test]
fn test_merge_and_order_indices() {
assert_eq!(
merge_and_order_indices([0, 3, 4], [1, 3, 5]),
vec![0, 1, 3, 4, 5]
);
assert_eq!(
merge_and_order_indices([3, 0, 4], [5, 1, 3]),
vec![0, 1, 3, 4, 5]
);
}
#[test]
fn test_set_difference() {
assert_eq!(set_difference([0, 3, 4], [1, 2]), vec![0, 3, 4]);
assert_eq!(set_difference([0, 3, 4], [1, 2, 4]), vec![0, 3]);
assert_eq!(set_difference([3, 4, 0], [1, 2, 4]), vec![3, 0]);
assert_eq!(set_difference([0, 3, 4], [4, 1, 2]), vec![0, 3]);
assert_eq!(set_difference([3, 4, 0], [4, 1, 2]), vec![3, 0]);
}
#[test]
fn test_is_sorted() {
assert!(is_sorted::<usize>([]));
assert!(is_sorted([0]));
assert!(is_sorted([0, 3, 4]));
assert!(is_sorted([0, 1, 2]));
assert!(is_sorted([0, 1, 4]));
assert!(is_sorted([0usize; 0]));
assert!(is_sorted([1, 2]));
assert!(!is_sorted([3, 2]));
}
#[test]
fn test_find_indices() -> Result<()> {
assert_eq!(find_indices(&[0, 3, 4], [0, 3, 4])?, vec![0, 1, 2]);
assert_eq!(find_indices(&[0, 3, 4], [0, 4, 3])?, vec![0, 2, 1]);
assert_eq!(find_indices(&[3, 0, 4], [0, 3])?, vec![1, 0]);
assert!(find_indices(&[0, 3], [0, 3, 4]).is_err());
assert!(find_indices(&[0, 3, 4], [0, 2]).is_err());
Ok(())
}
#[test]
fn test_transpose() -> Result<()> {
let in_data = vec![vec![1, 2, 3], vec![4, 5, 6]];
let transposed = transpose(in_data);
let expected = vec![vec![1, 4], vec![2, 5], vec![3, 6]];
assert_eq!(expected, transposed);
Ok(())
}
}