1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Column

use arrow_schema::{Field, FieldRef};

use crate::error::_schema_err;
use crate::utils::{parse_identifiers_normalized, quote_identifier};
use crate::{DFSchema, DataFusionError, Result, SchemaError, TableReference};
use std::collections::HashSet;
use std::convert::Infallible;
use std::fmt;
use std::str::FromStr;
use std::sync::Arc;

/// A named reference to a qualified field in a schema.
#[derive(Debug, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct Column {
    /// relation/table reference.
    pub relation: Option<TableReference>,
    /// field/column name.
    pub name: String,
}

impl Column {
    /// Create Column from optional qualifier and name. The optional qualifier, if present,
    /// will be parsed and normalized by default.
    ///
    /// See full details on [`TableReference::parse_str`]
    ///
    /// [`TableReference::parse_str`]: crate::TableReference::parse_str
    pub fn new(
        relation: Option<impl Into<TableReference>>,
        name: impl Into<String>,
    ) -> Self {
        Self {
            relation: relation.map(|r| r.into()),
            name: name.into(),
        }
    }

    /// Convenience method for when there is no qualifier
    pub fn new_unqualified(name: impl Into<String>) -> Self {
        Self {
            relation: None,
            name: name.into(),
        }
    }

    /// Create Column from unqualified name.
    ///
    /// Alias for `Column::new_unqualified`
    pub fn from_name(name: impl Into<String>) -> Self {
        Self {
            relation: None,
            name: name.into(),
        }
    }

    fn from_idents(idents: &mut Vec<String>) -> Option<Self> {
        let (relation, name) = match idents.len() {
            1 => (None, idents.remove(0)),
            2 => (
                Some(TableReference::Bare {
                    table: idents.remove(0).into(),
                }),
                idents.remove(0),
            ),
            3 => (
                Some(TableReference::Partial {
                    schema: idents.remove(0).into(),
                    table: idents.remove(0).into(),
                }),
                idents.remove(0),
            ),
            4 => (
                Some(TableReference::Full {
                    catalog: idents.remove(0).into(),
                    schema: idents.remove(0).into(),
                    table: idents.remove(0).into(),
                }),
                idents.remove(0),
            ),
            // any expression that failed to parse or has more than 4 period delimited
            // identifiers will be treated as an unqualified column name
            _ => return None,
        };
        Some(Self { relation, name })
    }

    /// Deserialize a fully qualified name string into a column
    ///
    /// Treats the name as a SQL identifier. For example
    /// `foo.BAR` would be parsed to a reference to relation `foo`, column name `bar` (lower case)
    /// where `"foo.BAR"` would be parsed to a reference to column named `foo.BAR`
    pub fn from_qualified_name(flat_name: impl Into<String>) -> Self {
        let flat_name = flat_name.into();
        Self::from_idents(&mut parse_identifiers_normalized(&flat_name, false))
            .unwrap_or_else(|| Self {
                relation: None,
                name: flat_name,
            })
    }

    /// Deserialize a fully qualified name string into a column preserving column text case
    pub fn from_qualified_name_ignore_case(flat_name: impl Into<String>) -> Self {
        let flat_name = flat_name.into();
        Self::from_idents(&mut parse_identifiers_normalized(&flat_name, true))
            .unwrap_or_else(|| Self {
                relation: None,
                name: flat_name,
            })
    }

    /// return the column's name.
    ///
    /// Note: This ignores the relation and returns the column name only.
    pub fn name(&self) -> &str {
        &self.name
    }

    /// Serialize column into a flat name string
    pub fn flat_name(&self) -> String {
        match &self.relation {
            Some(r) => format!("{}.{}", r, self.name),
            None => self.name.clone(),
        }
    }

    /// Serialize column into a quoted flat name string
    pub fn quoted_flat_name(&self) -> String {
        match &self.relation {
            Some(r) => {
                format!(
                    "{}.{}",
                    r.to_quoted_string(),
                    quote_identifier(self.name.as_str())
                )
            }
            None => quote_identifier(&self.name).to_string(),
        }
    }

    /// Qualify column if not done yet.
    ///
    /// If this column already has a [relation](Self::relation), it will be returned as is and the given parameters are
    /// ignored. Otherwise this will search through the given schemas to find the column. This will use the first schema
    /// that matches.
    ///
    /// A schema matches if there is a single column that -- when unqualified -- matches this column. There is an
    /// exception for `USING` statements, see below.
    ///
    /// # Using columns
    /// Take the following SQL statement:
    ///
    /// ```sql
    /// SELECT id FROM t1 JOIN t2 USING(id)
    /// ```
    ///
    /// In this case, both `t1.id` and `t2.id` will match unqualified column `id`. To express this possibility, use
    /// `using_columns`. Each entry in this array is a set of columns that are bound together via a `USING` clause. So
    /// in this example this would be `[{t1.id, t2.id}]`.
    #[deprecated(
        since = "20.0.0",
        note = "use normalize_with_schemas_and_ambiguity_check instead"
    )]
    pub fn normalize_with_schemas(
        self,
        schemas: &[&Arc<DFSchema>],
        using_columns: &[HashSet<Column>],
    ) -> Result<Self> {
        if self.relation.is_some() {
            return Ok(self);
        }

        for schema in schemas {
            let qualified_fields =
                schema.qualified_fields_with_unqualified_name(&self.name);
            match qualified_fields.len() {
                0 => continue,
                1 => {
                    return Ok(Column::from(qualified_fields[0]));
                }
                _ => {
                    // More than 1 fields in this schema have their names set to self.name.
                    //
                    // This should only happen when a JOIN query with USING constraint references
                    // join columns using unqualified column name. For example:
                    //
                    // ```sql
                    // SELECT id FROM t1 JOIN t2 USING(id)
                    // ```
                    //
                    // In this case, both `t1.id` and `t2.id` will match unqualified column `id`.
                    // We will use the relation from the first matched field to normalize self.

                    // Compare matched fields with one USING JOIN clause at a time
                    let columns = schema.columns_with_unqualified_name(&self.name);
                    for using_col in using_columns {
                        let all_matched = columns.iter().all(|f| using_col.contains(f));
                        // All matched fields belong to the same using column set, in orther words
                        // the same join clause. We simply pick the qualifier from the first match.
                        if all_matched {
                            return Ok(columns[0].clone());
                        }
                    }
                }
            }
        }

        _schema_err!(SchemaError::FieldNotFound {
            field: Box::new(Column::new(self.relation.clone(), self.name)),
            valid_fields: schemas.iter().flat_map(|s| s.columns()).collect(),
        })
    }

    /// Qualify column if not done yet.
    ///
    /// If this column already has a [relation](Self::relation), it will be returned as is and the given parameters are
    /// ignored. Otherwise this will search through the given schemas to find the column.
    ///
    /// Will check for ambiguity at each level of `schemas`.
    ///
    /// A schema matches if there is a single column that -- when unqualified -- matches this column. There is an
    /// exception for `USING` statements, see below.
    ///
    /// # Using columns
    /// Take the following SQL statement:
    ///
    /// ```sql
    /// SELECT id FROM t1 JOIN t2 USING(id)
    /// ```
    ///
    /// In this case, both `t1.id` and `t2.id` will match unqualified column `id`. To express this possibility, use
    /// `using_columns`. Each entry in this array is a set of columns that are bound together via a `USING` clause. So
    /// in this example this would be `[{t1.id, t2.id}]`.
    ///
    /// Regarding ambiguity check, `schemas` is structured to allow levels of schemas to be passed in.
    /// For example:
    ///
    /// ```text
    /// schemas = &[
    ///    &[schema1, schema2], // first level
    ///    &[schema3, schema4], // second level
    /// ]
    /// ```
    ///
    /// Will search for a matching field in all schemas in the first level. If a matching field according to above
    /// mentioned conditions is not found, then will check the next level. If found more than one matching column across
    /// all schemas in a level, that isn't a USING column, will return an error due to ambiguous column.
    ///
    /// If checked all levels and couldn't find field, will return field not found error.
    pub fn normalize_with_schemas_and_ambiguity_check(
        self,
        schemas: &[&[&DFSchema]],
        using_columns: &[HashSet<Column>],
    ) -> Result<Self> {
        if self.relation.is_some() {
            return Ok(self);
        }

        for schema_level in schemas {
            let qualified_fields = schema_level
                .iter()
                .flat_map(|s| s.qualified_fields_with_unqualified_name(&self.name))
                .collect::<Vec<_>>();
            match qualified_fields.len() {
                0 => continue,
                1 => return Ok(Column::from(qualified_fields[0])),
                _ => {
                    // More than 1 fields in this schema have their names set to self.name.
                    //
                    // This should only happen when a JOIN query with USING constraint references
                    // join columns using unqualified column name. For example:
                    //
                    // ```sql
                    // SELECT id FROM t1 JOIN t2 USING(id)
                    // ```
                    //
                    // In this case, both `t1.id` and `t2.id` will match unqualified column `id`.
                    // We will use the relation from the first matched field to normalize self.

                    // Compare matched fields with one USING JOIN clause at a time
                    let columns = schema_level
                        .iter()
                        .flat_map(|s| s.columns_with_unqualified_name(&self.name))
                        .collect::<Vec<_>>();
                    for using_col in using_columns {
                        let all_matched = columns.iter().all(|c| using_col.contains(c));
                        // All matched fields belong to the same using column set, in orther words
                        // the same join clause. We simply pick the qualifier from the first match.
                        if all_matched {
                            return Ok(columns[0].clone());
                        }
                    }

                    // If not due to USING columns then due to ambiguous column name
                    return _schema_err!(SchemaError::AmbiguousReference {
                        field: Column::new_unqualified(self.name),
                    });
                }
            }
        }

        _schema_err!(SchemaError::FieldNotFound {
            field: Box::new(self),
            valid_fields: schemas
                .iter()
                .flat_map(|s| s.iter())
                .flat_map(|s| s.columns())
                .collect(),
        })
    }
}

impl From<&str> for Column {
    fn from(c: &str) -> Self {
        Self::from_qualified_name(c)
    }
}

/// Create a column, cloning the string
impl From<&String> for Column {
    fn from(c: &String) -> Self {
        Self::from_qualified_name(c)
    }
}

/// Create a column, reusing the existing string
impl From<String> for Column {
    fn from(c: String) -> Self {
        Self::from_qualified_name(c)
    }
}

/// Create a column, use qualifier and field name
impl From<(Option<&TableReference>, &Field)> for Column {
    fn from((relation, field): (Option<&TableReference>, &Field)) -> Self {
        Self::new(relation.cloned(), field.name())
    }
}

/// Create a column, use qualifier and field name
impl From<(Option<&TableReference>, &FieldRef)> for Column {
    fn from((relation, field): (Option<&TableReference>, &FieldRef)) -> Self {
        Self::new(relation.cloned(), field.name())
    }
}

impl FromStr for Column {
    type Err = Infallible;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        Ok(s.into())
    }
}

impl fmt::Display for Column {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.flat_name())
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use arrow::datatypes::DataType;
    use arrow_schema::SchemaBuilder;

    fn create_qualified_schema(qualifier: &str, names: Vec<&str>) -> Result<DFSchema> {
        let mut schema_builder = SchemaBuilder::new();
        schema_builder.extend(
            names
                .iter()
                .map(|f| Field::new(*f, DataType::Boolean, true)),
        );
        let schema = Arc::new(schema_builder.finish());
        DFSchema::try_from_qualified_schema(qualifier, &schema)
    }

    #[test]
    fn test_normalize_with_schemas_and_ambiguity_check() -> Result<()> {
        let schema1 = create_qualified_schema("t1", vec!["a", "b"])?;
        let schema2 = create_qualified_schema("t2", vec!["c", "d"])?;
        let schema3 = create_qualified_schema("t3", vec!["a", "b", "c", "d", "e"])?;

        // already normalized
        let col = Column::new(Some("t1"), "a");
        let col = col.normalize_with_schemas_and_ambiguity_check(&[], &[])?;
        assert_eq!(col, Column::new(Some("t1"), "a"));

        // should find in first level (schema1)
        let col = Column::from_name("a");
        let col = col.normalize_with_schemas_and_ambiguity_check(
            &[&[&schema1, &schema2], &[&schema3]],
            &[],
        )?;
        assert_eq!(col, Column::new(Some("t1"), "a"));

        // should find in second level (schema3)
        let col = Column::from_name("e");
        let col = col.normalize_with_schemas_and_ambiguity_check(
            &[&[&schema1, &schema2], &[&schema3]],
            &[],
        )?;
        assert_eq!(col, Column::new(Some("t3"), "e"));

        // using column in first level (pick schema1)
        let mut using_columns = HashSet::new();
        using_columns.insert(Column::new(Some("t1"), "a"));
        using_columns.insert(Column::new(Some("t3"), "a"));
        let col = Column::from_name("a");
        let col = col.normalize_with_schemas_and_ambiguity_check(
            &[&[&schema1, &schema3], &[&schema2]],
            &[using_columns],
        )?;
        assert_eq!(col, Column::new(Some("t1"), "a"));

        // not found in any level
        let col = Column::from_name("z");
        let err = col
            .normalize_with_schemas_and_ambiguity_check(
                &[&[&schema1, &schema2], &[&schema3]],
                &[],
            )
            .expect_err("should've failed to find field");
        let expected = r#"Schema error: No field named z. Valid fields are t1.a, t1.b, t2.c, t2.d, t3.a, t3.b, t3.c, t3.d, t3.e."#;
        assert_eq!(err.strip_backtrace(), expected);

        // ambiguous column reference
        let col = Column::from_name("a");
        let err = col
            .normalize_with_schemas_and_ambiguity_check(
                &[&[&schema1, &schema3], &[&schema2]],
                &[],
            )
            .expect_err("should've found ambiguous field");
        let expected = "Schema error: Ambiguous reference to unqualified field a";
        assert_eq!(err.strip_backtrace(), expected);

        Ok(())
    }
}