datafusion_common/types/native.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use super::{
LogicalField, LogicalFieldRef, LogicalFields, LogicalType, LogicalUnionFields,
TypeSignature,
};
use crate::error::{Result, _internal_err};
use arrow::compute::can_cast_types;
use arrow_schema::{
DataType, Field, FieldRef, Fields, IntervalUnit, TimeUnit, UnionFields,
};
use std::sync::Arc;
/// Representation of a type that DataFusion can handle natively. It is a subset
/// of the physical variants in Arrow's native [`DataType`].
#[derive(Debug, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum NativeType {
/// Null type
Null,
/// A boolean type representing the values `true` and `false`.
Boolean,
/// A signed 8-bit integer.
Int8,
/// A signed 16-bit integer.
Int16,
/// A signed 32-bit integer.
Int32,
/// A signed 64-bit integer.
Int64,
/// An unsigned 8-bit integer.
UInt8,
/// An unsigned 16-bit integer.
UInt16,
/// An unsigned 32-bit integer.
UInt32,
/// An unsigned 64-bit integer.
UInt64,
/// A 16-bit floating point number.
Float16,
/// A 32-bit floating point number.
Float32,
/// A 64-bit floating point number.
Float64,
/// A timestamp with an optional timezone.
///
/// Time is measured as a Unix epoch, counting the seconds from
/// 00:00:00.000 on 1 January 1970, excluding leap seconds,
/// as a signed 64-bit integer.
///
/// The time zone is a string indicating the name of a time zone, one of:
///
/// * As used in the Olson time zone database (the "tz database" or
/// "tzdata"), such as "America/New_York"
/// * An absolute time zone offset of the form +XX:XX or -XX:XX, such as +07:30
///
/// Timestamps with a non-empty timezone
/// ------------------------------------
///
/// If a Timestamp column has a non-empty timezone value, its epoch is
/// 1970-01-01 00:00:00 (January 1st 1970, midnight) in the *UTC* timezone
/// (the Unix epoch), regardless of the Timestamp's own timezone.
///
/// Therefore, timestamp values with a non-empty timezone correspond to
/// physical points in time together with some additional information about
/// how the data was obtained and/or how to display it (the timezone).
///
/// For example, the timestamp value 0 with the timezone string "Europe/Paris"
/// corresponds to "January 1st 1970, 00h00" in the UTC timezone, but the
/// application may prefer to display it as "January 1st 1970, 01h00" in
/// the Europe/Paris timezone (which is the same physical point in time).
///
/// One consequence is that timestamp values with a non-empty timezone
/// can be compared and ordered directly, since they all share the same
/// well-known point of reference (the Unix epoch).
///
/// Timestamps with an unset / empty timezone
/// -----------------------------------------
///
/// If a Timestamp column has no timezone value, its epoch is
/// 1970-01-01 00:00:00 (January 1st 1970, midnight) in an *unknown* timezone.
///
/// Therefore, timestamp values without a timezone cannot be meaningfully
/// interpreted as physical points in time, but only as calendar / clock
/// indications ("wall clock time") in an unspecified timezone.
///
/// For example, the timestamp value 0 with an empty timezone string
/// corresponds to "January 1st 1970, 00h00" in an unknown timezone: there
/// is not enough information to interpret it as a well-defined physical
/// point in time.
///
/// One consequence is that timestamp values without a timezone cannot
/// be reliably compared or ordered, since they may have different points of
/// reference. In particular, it is *not* possible to interpret an unset
/// or empty timezone as the same as "UTC".
///
/// Conversion between timezones
/// ----------------------------
///
/// If a Timestamp column has a non-empty timezone, changing the timezone
/// to a different non-empty value is a metadata-only operation:
/// the timestamp values need not change as their point of reference remains
/// the same (the Unix epoch).
///
/// However, if a Timestamp column has no timezone value, changing it to a
/// non-empty value requires to think about the desired semantics.
/// One possibility is to assume that the original timestamp values are
/// relative to the epoch of the timezone being set; timestamp values should
/// then adjusted to the Unix epoch (for example, changing the timezone from
/// empty to "Europe/Paris" would require converting the timestamp values
/// from "Europe/Paris" to "UTC", which seems counter-intuitive but is
/// nevertheless correct).
///
/// ```
/// # use arrow_schema::{DataType, TimeUnit};
/// DataType::Timestamp(TimeUnit::Second, None);
/// DataType::Timestamp(TimeUnit::Second, Some("literal".into()));
/// DataType::Timestamp(TimeUnit::Second, Some("string".to_string().into()));
/// ```
Timestamp(TimeUnit, Option<Arc<str>>),
/// A signed date representing the elapsed time since UNIX epoch (1970-01-01)
/// in days.
Date,
/// A signed time representing the elapsed time since midnight in the unit of `TimeUnit`.
Time(TimeUnit),
/// Measure of elapsed time in either seconds, milliseconds, microseconds or nanoseconds.
Duration(TimeUnit),
/// A "calendar" interval which models types that don't necessarily
/// have a precise duration without the context of a base timestamp (e.g.
/// days can differ in length during day light savings time transitions).
Interval(IntervalUnit),
/// Opaque binary data of variable length.
Binary,
/// Opaque binary data of fixed size.
/// Enum parameter specifies the number of bytes per value.
FixedSizeBinary(i32),
/// A variable-length string in Unicode with UTF-8 encoding.
String,
/// A list of some logical data type with variable length.
List(LogicalFieldRef),
/// A list of some logical data type with fixed length.
FixedSizeList(LogicalFieldRef, i32),
/// A nested type that contains a number of sub-fields.
Struct(LogicalFields),
/// A nested type that can represent slots of differing types.
Union(LogicalUnionFields),
/// Decimal value with precision and scale
///
/// * precision is the total number of digits
/// * scale is the number of digits past the decimal
///
/// For example the number 123.45 has precision 5 and scale 2.
///
/// In certain situations, scale could be negative number. For
/// negative scale, it is the number of padding 0 to the right
/// of the digits.
///
/// For example the number 12300 could be treated as a decimal
/// has precision 3 and scale -2.
Decimal(u8, i8),
/// A Map is a type that an association between a key and a value.
///
/// The key and value types are not constrained, but keys should be
/// hashable and unique.
///
/// In a field with Map type, key type and the second the value type. The names of the
/// child fields may be respectively "entries", "key", and "value", but this is
/// not enforced.
Map(LogicalFieldRef),
}
impl LogicalType for NativeType {
fn native(&self) -> &NativeType {
self
}
fn signature(&self) -> TypeSignature<'_> {
TypeSignature::Native(self)
}
fn default_cast_for(&self, origin: &DataType) -> Result<DataType> {
use DataType::*;
fn default_field_cast(to: &LogicalField, from: &Field) -> Result<FieldRef> {
Ok(Arc::new(Field::new(
to.name.clone(),
to.logical_type.default_cast_for(from.data_type())?,
to.nullable,
)))
}
Ok(match (self, origin) {
(Self::Null, _) => Null,
(Self::Boolean, _) => Boolean,
(Self::Int8, _) => Int8,
(Self::Int16, _) => Int16,
(Self::Int32, _) => Int32,
(Self::Int64, _) => Int64,
(Self::UInt8, _) => UInt8,
(Self::UInt16, _) => UInt16,
(Self::UInt32, _) => UInt32,
(Self::UInt64, _) => UInt64,
(Self::Float16, _) => Float16,
(Self::Float32, _) => Float32,
(Self::Float64, _) => Float64,
(Self::Decimal(p, s), _) if p <= &38 => Decimal128(*p, *s),
(Self::Decimal(p, s), _) => Decimal256(*p, *s),
(Self::Timestamp(tu, tz), _) => Timestamp(*tu, tz.clone()),
(Self::Date, _) => Date32,
(Self::Time(tu), _) => match tu {
TimeUnit::Second | TimeUnit::Millisecond => Time32(*tu),
TimeUnit::Microsecond | TimeUnit::Nanosecond => Time64(*tu),
},
(Self::Duration(tu), _) => Duration(*tu),
(Self::Interval(iu), _) => Interval(*iu),
(Self::Binary, LargeUtf8) => LargeBinary,
(Self::Binary, Utf8View) => BinaryView,
(Self::Binary, data_type) if can_cast_types(data_type, &BinaryView) => {
BinaryView
}
(Self::Binary, data_type) if can_cast_types(data_type, &LargeBinary) => {
LargeBinary
}
(Self::Binary, data_type) if can_cast_types(data_type, &Binary) => Binary,
(Self::FixedSizeBinary(size), _) => FixedSizeBinary(*size),
(Self::String, LargeBinary) => LargeUtf8,
(Self::String, BinaryView) => Utf8View,
(Self::String, data_type) if can_cast_types(data_type, &Utf8View) => Utf8View,
(Self::String, data_type) if can_cast_types(data_type, &LargeUtf8) => {
LargeUtf8
}
(Self::String, data_type) if can_cast_types(data_type, &Utf8) => Utf8,
(Self::List(to_field), List(from_field) | FixedSizeList(from_field, _)) => {
List(default_field_cast(to_field, from_field)?)
}
(Self::List(to_field), LargeList(from_field)) => {
LargeList(default_field_cast(to_field, from_field)?)
}
(Self::List(to_field), ListView(from_field)) => {
ListView(default_field_cast(to_field, from_field)?)
}
(Self::List(to_field), LargeListView(from_field)) => {
LargeListView(default_field_cast(to_field, from_field)?)
}
// List array where each element is a len 1 list of the origin type
(Self::List(field), _) => List(Arc::new(Field::new(
field.name.clone(),
field.logical_type.default_cast_for(origin)?,
field.nullable,
))),
(
Self::FixedSizeList(to_field, to_size),
FixedSizeList(from_field, from_size),
) if from_size == to_size => {
FixedSizeList(default_field_cast(to_field, from_field)?, *to_size)
}
(
Self::FixedSizeList(to_field, size),
List(from_field)
| LargeList(from_field)
| ListView(from_field)
| LargeListView(from_field),
) => FixedSizeList(default_field_cast(to_field, from_field)?, *size),
// FixedSizeList array where each element is a len 1 list of the origin type
(Self::FixedSizeList(field, size), _) => FixedSizeList(
Arc::new(Field::new(
field.name.clone(),
field.logical_type.default_cast_for(origin)?,
field.nullable,
)),
*size,
),
// From https://github.com/apache/arrow-rs/blob/56525efbd5f37b89d1b56aa51709cab9f81bc89e/arrow-cast/src/cast/mod.rs#L189-L196
(Self::Struct(to_fields), Struct(from_fields))
if from_fields.len() == to_fields.len() =>
{
Struct(
from_fields
.iter()
.zip(to_fields.iter())
.map(|(from, to)| default_field_cast(to, from))
.collect::<Result<Fields>>()?,
)
}
(Self::Struct(to_fields), Null) => Struct(
to_fields
.iter()
.map(|field| {
Ok(Arc::new(Field::new(
field.name.clone(),
field.logical_type.default_cast_for(&Null)?,
field.nullable,
)))
})
.collect::<Result<Fields>>()?,
),
(Self::Map(to_field), Map(from_field, sorted)) => {
Map(default_field_cast(to_field, from_field)?, *sorted)
}
(Self::Map(field), Null) => Map(
Arc::new(Field::new(
field.name.clone(),
field.logical_type.default_cast_for(&Null)?,
field.nullable,
)),
false,
),
(Self::Union(to_fields), Union(from_fields, mode))
if from_fields.len() == to_fields.len() =>
{
Union(
from_fields
.iter()
.zip(to_fields.iter())
.map(|((_, from), (i, to))| {
Ok((*i, default_field_cast(to, from)?))
})
.collect::<Result<UnionFields>>()?,
*mode,
)
}
_ => {
return _internal_err!(
"Unavailable default cast for native type {:?} from physical type {:?}",
self,
origin
)
}
})
}
}
// The following From<DataType>, From<Field>, ... implementations are temporary
// mapping solutions to provide backwards compatibility while transitioning from
// the purely physical system to a logical / physical system.
impl From<DataType> for NativeType {
fn from(value: DataType) -> Self {
use NativeType::*;
match value {
DataType::Null => Null,
DataType::Boolean => Boolean,
DataType::Int8 => Int8,
DataType::Int16 => Int16,
DataType::Int32 => Int32,
DataType::Int64 => Int64,
DataType::UInt8 => UInt8,
DataType::UInt16 => UInt16,
DataType::UInt32 => UInt32,
DataType::UInt64 => UInt64,
DataType::Float16 => Float16,
DataType::Float32 => Float32,
DataType::Float64 => Float64,
DataType::Timestamp(tu, tz) => Timestamp(tu, tz),
DataType::Date32 | DataType::Date64 => Date,
DataType::Time32(tu) | DataType::Time64(tu) => Time(tu),
DataType::Duration(tu) => Duration(tu),
DataType::Interval(iu) => Interval(iu),
DataType::Binary | DataType::LargeBinary | DataType::BinaryView => Binary,
DataType::FixedSizeBinary(size) => FixedSizeBinary(size),
DataType::Utf8 | DataType::LargeUtf8 | DataType::Utf8View => String,
DataType::List(field)
| DataType::ListView(field)
| DataType::LargeList(field)
| DataType::LargeListView(field) => List(Arc::new(field.as_ref().into())),
DataType::FixedSizeList(field, size) => {
FixedSizeList(Arc::new(field.as_ref().into()), size)
}
DataType::Struct(fields) => Struct(LogicalFields::from(&fields)),
DataType::Union(union_fields, _) => {
Union(LogicalUnionFields::from(&union_fields))
}
DataType::Decimal128(p, s) | DataType::Decimal256(p, s) => Decimal(p, s),
DataType::Map(field, _) => Map(Arc::new(field.as_ref().into())),
DataType::Dictionary(_, data_type) => data_type.as_ref().clone().into(),
DataType::RunEndEncoded(_, field) => field.data_type().clone().into(),
}
}
}
impl From<&DataType> for NativeType {
fn from(value: &DataType) -> Self {
value.clone().into()
}
}