datafusion_common/cse.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Common Subexpression Elimination logic implemented in [`CSE`] can be controlled with
//! a [`CSEController`], that defines how to eliminate common subtrees from a particular
//! [`TreeNode`] tree.
use crate::hash_utils::combine_hashes;
use crate::tree_node::{
Transformed, TransformedResult, TreeNode, TreeNodeRecursion, TreeNodeRewriter,
TreeNodeVisitor,
};
use crate::Result;
use indexmap::IndexMap;
use std::collections::HashMap;
use std::hash::{BuildHasher, Hash, Hasher, RandomState};
use std::marker::PhantomData;
use std::sync::Arc;
/// Hashes the direct content of an [`TreeNode`] without recursing into its children.
///
/// This method is useful to incrementally compute hashes, such as in [`CSE`] which builds
/// a deep hash of a node and its descendants during the bottom-up phase of the first
/// traversal and so avoid computing the hash of the node and then the hash of its
/// descendants separately.
///
/// If a node doesn't have any children then the value returned by `hash_node()` is
/// similar to '.hash()`, but not necessarily returns the same value.
pub trait HashNode {
fn hash_node<H: Hasher>(&self, state: &mut H);
}
impl<T: HashNode + ?Sized> HashNode for Arc<T> {
fn hash_node<H: Hasher>(&self, state: &mut H) {
(**self).hash_node(state);
}
}
/// Identifier that represents a [`TreeNode`] tree.
///
/// This identifier is designed to be efficient and "hash", "accumulate", "equal" and
/// "have no collision (as low as possible)"
#[derive(Debug, Eq, PartialEq)]
struct Identifier<'n, N> {
// Hash of `node` built up incrementally during the first, visiting traversal.
// Its value is not necessarily equal to default hash of the node. E.g. it is not
// equal to `expr.hash()` if the node is `Expr`.
hash: u64,
node: &'n N,
}
impl<N> Clone for Identifier<'_, N> {
fn clone(&self) -> Self {
*self
}
}
impl<N> Copy for Identifier<'_, N> {}
impl<N> Hash for Identifier<'_, N> {
fn hash<H: Hasher>(&self, state: &mut H) {
state.write_u64(self.hash);
}
}
impl<'n, N: HashNode> Identifier<'n, N> {
fn new(node: &'n N, random_state: &RandomState) -> Self {
let mut hasher = random_state.build_hasher();
node.hash_node(&mut hasher);
let hash = hasher.finish();
Self { hash, node }
}
fn combine(mut self, other: Option<Self>) -> Self {
other.map_or(self, |other_id| {
self.hash = combine_hashes(self.hash, other_id.hash);
self
})
}
}
/// A cache that contains the postorder index and the identifier of [`TreeNode`]s by the
/// preorder index of the nodes.
///
/// This cache is filled by [`CSEVisitor`] during the first traversal and is
/// used by [`CSERewriter`] during the second traversal.
///
/// The purpose of this cache is to quickly find the identifier of a node during the
/// second traversal.
///
/// Elements in this array are added during `f_down` so the indexes represent the preorder
/// index of nodes and thus element 0 belongs to the root of the tree.
///
/// The elements of the array are tuples that contain:
/// - Postorder index that belongs to the preorder index. Assigned during `f_up`, start
/// from 0.
/// - The optional [`Identifier`] of the node. If none the node should not be considered
/// for CSE.
///
/// # Example
/// An expression tree like `(a + b)` would have the following `IdArray`:
/// ```text
/// [
/// (2, Some(Identifier(hash_of("a + b"), &"a + b"))),
/// (1, Some(Identifier(hash_of("a"), &"a"))),
/// (0, Some(Identifier(hash_of("b"), &"b")))
/// ]
/// ```
type IdArray<'n, N> = Vec<(usize, Option<Identifier<'n, N>>)>;
#[derive(PartialEq, Eq)]
/// How many times a node is evaluated. A node can be considered common if evaluated
/// surely at least 2 times or surely only once but also conditionally.
enum NodeEvaluation {
SurelyOnce,
ConditionallyAtLeastOnce,
Common,
}
/// A map that contains the evaluation stats of [`TreeNode`]s by their identifiers.
type NodeStats<'n, N> = HashMap<Identifier<'n, N>, NodeEvaluation>;
/// A map that contains the common [`TreeNode`]s and their alias by their identifiers,
/// extracted during the second, rewriting traversal.
type CommonNodes<'n, N> = IndexMap<Identifier<'n, N>, (N, String)>;
type ChildrenList<N> = (Vec<N>, Vec<N>);
/// The [`TreeNode`] specific definition of elimination.
pub trait CSEController {
/// The type of the tree nodes.
type Node;
/// Splits the children to normal and conditionally evaluated ones or returns `None`
/// if all are always evaluated.
fn conditional_children(node: &Self::Node) -> Option<ChildrenList<&Self::Node>>;
// Returns true if a node is valid. If a node is invalid then it can't be eliminated.
// Validity is propagated up which means no subtree can be eliminated that contains
// an invalid node.
// (E.g. volatile expressions are not valid and subtrees containing such a node can't
// be extracted.)
fn is_valid(node: &Self::Node) -> bool;
// Returns true if a node should be ignored during CSE. Contrary to validity of a node,
// it is not propagated up.
fn is_ignored(&self, node: &Self::Node) -> bool;
// Generates a new name for the extracted subtree.
fn generate_alias(&self) -> String;
// Replaces a node to the generated alias.
fn rewrite(&mut self, node: &Self::Node, alias: &str) -> Self::Node;
// A helper method called on each node during top-down traversal during the second,
// rewriting traversal of CSE.
fn rewrite_f_down(&mut self, _node: &Self::Node) {}
// A helper method called on each node during bottom-up traversal during the second,
// rewriting traversal of CSE.
fn rewrite_f_up(&mut self, _node: &Self::Node) {}
}
/// The result of potentially rewriting a list of [`TreeNode`]s to eliminate common
/// subtrees.
#[derive(Debug)]
pub enum FoundCommonNodes<N> {
/// No common [`TreeNode`]s were found
No { original_nodes_list: Vec<Vec<N>> },
/// Common [`TreeNode`]s were found
Yes {
/// extracted common [`TreeNode`]
common_nodes: Vec<(N, String)>,
/// new [`TreeNode`]s with common subtrees replaced
new_nodes_list: Vec<Vec<N>>,
/// original [`TreeNode`]s
original_nodes_list: Vec<Vec<N>>,
},
}
/// Go through a [`TreeNode`] tree and generate identifiers for each subtrees.
///
/// An identifier contains information of the [`TreeNode`] itself and its subtrees.
/// This visitor implementation use a stack `visit_stack` to track traversal, which
/// lets us know when a subtree's visiting is finished. When `pre_visit` is called
/// (traversing to a new node), an `EnterMark` and an `NodeItem` will be pushed into stack.
/// And try to pop out a `EnterMark` on leaving a node (`f_up()`). All `NodeItem`
/// before the first `EnterMark` is considered to be sub-tree of the leaving node.
///
/// This visitor also records identifier in `id_array`. Makes the following traverse
/// pass can get the identifier of a node without recalculate it. We assign each node
/// in the tree a series number, start from 1, maintained by `series_number`.
/// Series number represents the order we left (`f_up()`) a node. Has the property
/// that child node's series number always smaller than parent's. While `id_array` is
/// organized in the order we enter (`f_down()`) a node. `node_count` helps us to
/// get the index of `id_array` for each node.
///
/// A [`TreeNode`] without any children (column, literal etc.) will not have identifier
/// because they should not be recognized as common subtree.
struct CSEVisitor<'a, 'n, N, C: CSEController<Node = N>> {
/// statistics of [`TreeNode`]s
node_stats: &'a mut NodeStats<'n, N>,
/// cache to speed up second traversal
id_array: &'a mut IdArray<'n, N>,
/// inner states
visit_stack: Vec<VisitRecord<'n, N>>,
/// preorder index, start from 0.
down_index: usize,
/// postorder index, start from 0.
up_index: usize,
/// a [`RandomState`] to generate hashes during the first traversal
random_state: &'a RandomState,
/// a flag to indicate that common [`TreeNode`]s found
found_common: bool,
/// if we are in a conditional branch. A conditional branch means that the [`TreeNode`]
/// might not be executed depending on the runtime values of other [`TreeNode`]s, and
/// thus can not be extracted as a common [`TreeNode`].
conditional: bool,
controller: &'a C,
}
/// Record item that used when traversing a [`TreeNode`] tree.
enum VisitRecord<'n, N> {
/// Marks the beginning of [`TreeNode`]. It contains:
/// - The post-order index assigned during the first, visiting traversal.
EnterMark(usize),
/// Marks an accumulated subtree. It contains:
/// - The accumulated identifier of a subtree.
/// - A accumulated boolean flag if the subtree is valid for CSE.
/// The flag is propagated up from children to parent. (E.g. volatile expressions
/// are not valid and can't be extracted, but non-volatile children of volatile
/// expressions can be extracted.)
NodeItem(Identifier<'n, N>, bool),
}
impl<'n, N: TreeNode + HashNode, C: CSEController<Node = N>> CSEVisitor<'_, 'n, N, C> {
/// Find the first `EnterMark` in the stack, and accumulates every `NodeItem` before
/// it. Returns a tuple that contains:
/// - The pre-order index of the [`TreeNode`] we marked.
/// - The accumulated identifier of the children of the marked [`TreeNode`].
/// - An accumulated boolean flag from the children of the marked [`TreeNode`] if all
/// children are valid for CSE (i.e. it is safe to extract the [`TreeNode`] as a
/// common [`TreeNode`] from its children POV).
/// (E.g. if any of the children of the marked expression is not valid (e.g. is
/// volatile) then the expression is also not valid, so we can propagate this
/// information up from children to parents via `visit_stack` during the first,
/// visiting traversal and no need to test the expression's validity beforehand with
/// an extra traversal).
fn pop_enter_mark(&mut self) -> (usize, Option<Identifier<'n, N>>, bool) {
let mut node_id = None;
let mut is_valid = true;
while let Some(item) = self.visit_stack.pop() {
match item {
VisitRecord::EnterMark(down_index) => {
return (down_index, node_id, is_valid);
}
VisitRecord::NodeItem(sub_node_id, sub_node_is_valid) => {
node_id = Some(sub_node_id.combine(node_id));
is_valid &= sub_node_is_valid;
}
}
}
unreachable!("EnterMark should paired with NodeItem");
}
}
impl<'n, N: TreeNode + HashNode + Eq, C: CSEController<Node = N>> TreeNodeVisitor<'n>
for CSEVisitor<'_, 'n, N, C>
{
type Node = N;
fn f_down(&mut self, node: &'n Self::Node) -> Result<TreeNodeRecursion> {
self.id_array.push((0, None));
self.visit_stack
.push(VisitRecord::EnterMark(self.down_index));
self.down_index += 1;
// If a node can short-circuit then some of its children might not be executed so
// count the occurrence either normal or conditional.
Ok(if self.conditional {
// If we are already in a conditionally evaluated subtree then continue
// traversal.
TreeNodeRecursion::Continue
} else {
// If we are already in a node that can short-circuit then start new
// traversals on its normal conditional children.
match C::conditional_children(node) {
Some((normal, conditional)) => {
normal
.into_iter()
.try_for_each(|n| n.visit(self).map(|_| ()))?;
self.conditional = true;
conditional
.into_iter()
.try_for_each(|n| n.visit(self).map(|_| ()))?;
self.conditional = false;
TreeNodeRecursion::Jump
}
// In case of non-short-circuit node continue the traversal.
_ => TreeNodeRecursion::Continue,
}
})
}
fn f_up(&mut self, node: &'n Self::Node) -> Result<TreeNodeRecursion> {
let (down_index, sub_node_id, sub_node_is_valid) = self.pop_enter_mark();
let node_id = Identifier::new(node, self.random_state).combine(sub_node_id);
let is_valid = C::is_valid(node) && sub_node_is_valid;
self.id_array[down_index].0 = self.up_index;
if is_valid && !self.controller.is_ignored(node) {
self.id_array[down_index].1 = Some(node_id);
self.node_stats
.entry(node_id)
.and_modify(|evaluation| {
if *evaluation == NodeEvaluation::SurelyOnce
|| *evaluation == NodeEvaluation::ConditionallyAtLeastOnce
&& !self.conditional
{
*evaluation = NodeEvaluation::Common;
self.found_common = true;
}
})
.or_insert_with(|| {
if self.conditional {
NodeEvaluation::ConditionallyAtLeastOnce
} else {
NodeEvaluation::SurelyOnce
}
});
}
self.visit_stack
.push(VisitRecord::NodeItem(node_id, is_valid));
self.up_index += 1;
Ok(TreeNodeRecursion::Continue)
}
}
/// Rewrite a [`TreeNode`] tree by replacing detected common subtrees with the
/// corresponding temporary [`TreeNode`], that column contains the evaluate result of
/// replaced [`TreeNode`] tree.
struct CSERewriter<'a, 'n, N, C: CSEController<Node = N>> {
/// statistics of [`TreeNode`]s
node_stats: &'a NodeStats<'n, N>,
/// cache to speed up second traversal
id_array: &'a IdArray<'n, N>,
/// common [`TreeNode`]s, that are replaced during the second traversal, are collected
/// to this map
common_nodes: &'a mut CommonNodes<'n, N>,
// preorder index, starts from 0.
down_index: usize,
controller: &'a mut C,
}
impl<N: TreeNode + Eq, C: CSEController<Node = N>> TreeNodeRewriter
for CSERewriter<'_, '_, N, C>
{
type Node = N;
fn f_down(&mut self, node: Self::Node) -> Result<Transformed<Self::Node>> {
self.controller.rewrite_f_down(&node);
let (up_index, node_id) = self.id_array[self.down_index];
self.down_index += 1;
// Handle nodes with identifiers only
if let Some(node_id) = node_id {
let evaluation = self.node_stats.get(&node_id).unwrap();
if *evaluation == NodeEvaluation::Common {
// step index to skip all sub-node (which has smaller series number).
while self.down_index < self.id_array.len()
&& self.id_array[self.down_index].0 < up_index
{
self.down_index += 1;
}
let (node, alias) =
self.common_nodes.entry(node_id).or_insert_with(|| {
let node_alias = self.controller.generate_alias();
(node, node_alias)
});
let rewritten = self.controller.rewrite(node, alias);
return Ok(Transformed::new(rewritten, true, TreeNodeRecursion::Jump));
}
}
Ok(Transformed::no(node))
}
fn f_up(&mut self, node: Self::Node) -> Result<Transformed<Self::Node>> {
self.controller.rewrite_f_up(&node);
Ok(Transformed::no(node))
}
}
/// The main entry point of Common Subexpression Elimination.
///
/// [`CSE`] requires a [`CSEController`], that defines how common subtrees of a particular
/// [`TreeNode`] tree can be eliminated. The elimination process can be started with the
/// [`CSE::extract_common_nodes()`] method.
pub struct CSE<N, C: CSEController<Node = N>> {
random_state: RandomState,
phantom_data: PhantomData<N>,
controller: C,
}
impl<N: TreeNode + HashNode + Clone + Eq, C: CSEController<Node = N>> CSE<N, C> {
pub fn new(controller: C) -> Self {
Self {
random_state: RandomState::new(),
phantom_data: PhantomData,
controller,
}
}
/// Add an identifier to `id_array` for every [`TreeNode`] in this tree.
fn node_to_id_array<'n>(
&self,
node: &'n N,
node_stats: &mut NodeStats<'n, N>,
id_array: &mut IdArray<'n, N>,
) -> Result<bool> {
let mut visitor = CSEVisitor {
node_stats,
id_array,
visit_stack: vec![],
down_index: 0,
up_index: 0,
random_state: &self.random_state,
found_common: false,
conditional: false,
controller: &self.controller,
};
node.visit(&mut visitor)?;
Ok(visitor.found_common)
}
/// Returns the identifier list for each element in `nodes` and a flag to indicate if
/// rewrite phase of CSE make sense.
///
/// Returns and array with 1 element for each input node in `nodes`
///
/// Each element is itself the result of [`CSE::node_to_id_array`] for that node
/// (e.g. the identifiers for each node in the tree)
fn to_arrays<'n>(
&self,
nodes: &'n [N],
node_stats: &mut NodeStats<'n, N>,
) -> Result<(bool, Vec<IdArray<'n, N>>)> {
let mut found_common = false;
nodes
.iter()
.map(|n| {
let mut id_array = vec![];
self.node_to_id_array(n, node_stats, &mut id_array)
.map(|fc| {
found_common |= fc;
id_array
})
})
.collect::<Result<Vec<_>>>()
.map(|id_arrays| (found_common, id_arrays))
}
/// Replace common subtrees in `node` with the corresponding temporary
/// [`TreeNode`], updating `common_nodes` with any replaced [`TreeNode`]
fn replace_common_node<'n>(
&mut self,
node: N,
id_array: &IdArray<'n, N>,
node_stats: &NodeStats<'n, N>,
common_nodes: &mut CommonNodes<'n, N>,
) -> Result<N> {
if id_array.is_empty() {
Ok(Transformed::no(node))
} else {
node.rewrite(&mut CSERewriter {
node_stats,
id_array,
common_nodes,
down_index: 0,
controller: &mut self.controller,
})
}
.data()
}
/// Replace common subtrees in `nodes_list` with the corresponding temporary
/// [`TreeNode`], updating `common_nodes` with any replaced [`TreeNode`].
fn rewrite_nodes_list<'n>(
&mut self,
nodes_list: Vec<Vec<N>>,
arrays_list: &[Vec<IdArray<'n, N>>],
node_stats: &NodeStats<'n, N>,
common_nodes: &mut CommonNodes<'n, N>,
) -> Result<Vec<Vec<N>>> {
nodes_list
.into_iter()
.zip(arrays_list.iter())
.map(|(nodes, arrays)| {
nodes
.into_iter()
.zip(arrays.iter())
.map(|(node, id_array)| {
self.replace_common_node(node, id_array, node_stats, common_nodes)
})
.collect::<Result<Vec<_>>>()
})
.collect::<Result<Vec<_>>>()
}
/// Extracts common [`TreeNode`]s and rewrites `nodes_list`.
///
/// Returns [`FoundCommonNodes`] recording the result of the extraction.
pub fn extract_common_nodes(
&mut self,
nodes_list: Vec<Vec<N>>,
) -> Result<FoundCommonNodes<N>> {
let mut found_common = false;
let mut node_stats = NodeStats::new();
let id_arrays_list = nodes_list
.iter()
.map(|nodes| {
self.to_arrays(nodes, &mut node_stats)
.map(|(fc, id_arrays)| {
found_common |= fc;
id_arrays
})
})
.collect::<Result<Vec<_>>>()?;
if found_common {
let mut common_nodes = CommonNodes::new();
let new_nodes_list = self.rewrite_nodes_list(
// Must clone the list of nodes as Identifiers use references to original
// nodes so we have to keep them intact.
nodes_list.clone(),
&id_arrays_list,
&node_stats,
&mut common_nodes,
)?;
assert!(!common_nodes.is_empty());
Ok(FoundCommonNodes::Yes {
common_nodes: common_nodes.into_values().collect(),
new_nodes_list,
original_nodes_list: nodes_list,
})
} else {
Ok(FoundCommonNodes::No {
original_nodes_list: nodes_list,
})
}
}
}
#[cfg(test)]
mod test {
use crate::alias::AliasGenerator;
use crate::cse::{CSEController, HashNode, IdArray, Identifier, NodeStats, CSE};
use crate::tree_node::tests::TestTreeNode;
use crate::Result;
use std::collections::HashSet;
use std::hash::{Hash, Hasher};
const CSE_PREFIX: &str = "__common_node";
#[derive(Clone, Copy)]
pub enum TestTreeNodeMask {
Normal,
NormalAndAggregates,
}
pub struct TestTreeNodeCSEController<'a> {
alias_generator: &'a AliasGenerator,
mask: TestTreeNodeMask,
}
impl<'a> TestTreeNodeCSEController<'a> {
fn new(alias_generator: &'a AliasGenerator, mask: TestTreeNodeMask) -> Self {
Self {
alias_generator,
mask,
}
}
}
impl CSEController for TestTreeNodeCSEController<'_> {
type Node = TestTreeNode<String>;
fn conditional_children(
_: &Self::Node,
) -> Option<(Vec<&Self::Node>, Vec<&Self::Node>)> {
None
}
fn is_valid(_node: &Self::Node) -> bool {
true
}
fn is_ignored(&self, node: &Self::Node) -> bool {
let is_leaf = node.is_leaf();
let is_aggr = node.data == "avg" || node.data == "sum";
match self.mask {
TestTreeNodeMask::Normal => is_leaf || is_aggr,
TestTreeNodeMask::NormalAndAggregates => is_leaf,
}
}
fn generate_alias(&self) -> String {
self.alias_generator.next(CSE_PREFIX)
}
fn rewrite(&mut self, node: &Self::Node, alias: &str) -> Self::Node {
TestTreeNode::new_leaf(format!("alias({}, {})", node.data, alias))
}
}
impl HashNode for TestTreeNode<String> {
fn hash_node<H: Hasher>(&self, state: &mut H) {
self.data.hash(state);
}
}
#[test]
fn id_array_visitor() -> Result<()> {
let alias_generator = AliasGenerator::new();
let eliminator = CSE::new(TestTreeNodeCSEController::new(
&alias_generator,
TestTreeNodeMask::Normal,
));
let a_plus_1 = TestTreeNode::new(
vec![
TestTreeNode::new_leaf("a".to_string()),
TestTreeNode::new_leaf("1".to_string()),
],
"+".to_string(),
);
let avg_c = TestTreeNode::new(
vec![TestTreeNode::new_leaf("c".to_string())],
"avg".to_string(),
);
let sum_a_plus_1 = TestTreeNode::new(vec![a_plus_1], "sum".to_string());
let sum_a_plus_1_minus_avg_c =
TestTreeNode::new(vec![sum_a_plus_1, avg_c], "-".to_string());
let root = TestTreeNode::new(
vec![
sum_a_plus_1_minus_avg_c,
TestTreeNode::new_leaf("2".to_string()),
],
"*".to_string(),
);
let [sum_a_plus_1_minus_avg_c, _] = root.children.as_slice() else {
panic!("Cannot extract subtree references")
};
let [sum_a_plus_1, avg_c] = sum_a_plus_1_minus_avg_c.children.as_slice() else {
panic!("Cannot extract subtree references")
};
let [a_plus_1] = sum_a_plus_1.children.as_slice() else {
panic!("Cannot extract subtree references")
};
// skip aggregates
let mut id_array = vec![];
eliminator.node_to_id_array(&root, &mut NodeStats::new(), &mut id_array)?;
// Collect distinct hashes and set them to 0 in `id_array`
fn collect_hashes(
id_array: &mut IdArray<'_, TestTreeNode<String>>,
) -> HashSet<u64> {
id_array
.iter_mut()
.flat_map(|(_, id_option)| {
id_option.as_mut().map(|node_id| {
let hash = node_id.hash;
node_id.hash = 0;
hash
})
})
.collect::<HashSet<_>>()
}
let hashes = collect_hashes(&mut id_array);
assert_eq!(hashes.len(), 3);
let expected = vec![
(
8,
Some(Identifier {
hash: 0,
node: &root,
}),
),
(
6,
Some(Identifier {
hash: 0,
node: sum_a_plus_1_minus_avg_c,
}),
),
(3, None),
(
2,
Some(Identifier {
hash: 0,
node: a_plus_1,
}),
),
(0, None),
(1, None),
(5, None),
(4, None),
(7, None),
];
assert_eq!(expected, id_array);
// include aggregates
let eliminator = CSE::new(TestTreeNodeCSEController::new(
&alias_generator,
TestTreeNodeMask::NormalAndAggregates,
));
let mut id_array = vec![];
eliminator.node_to_id_array(&root, &mut NodeStats::new(), &mut id_array)?;
let hashes = collect_hashes(&mut id_array);
assert_eq!(hashes.len(), 5);
let expected = vec![
(
8,
Some(Identifier {
hash: 0,
node: &root,
}),
),
(
6,
Some(Identifier {
hash: 0,
node: sum_a_plus_1_minus_avg_c,
}),
),
(
3,
Some(Identifier {
hash: 0,
node: sum_a_plus_1,
}),
),
(
2,
Some(Identifier {
hash: 0,
node: a_plus_1,
}),
),
(0, None),
(1, None),
(
5,
Some(Identifier {
hash: 0,
node: avg_c,
}),
),
(4, None),
(7, None),
];
assert_eq!(expected, id_array);
Ok(())
}
}