datafusion_common/
dfschema.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! DFSchema is an extended schema struct that DataFusion uses to provide support for
//! fields with optional relation names.

use std::collections::{BTreeSet, HashMap, HashSet};
use std::fmt::{Display, Formatter};
use std::hash::Hash;
use std::sync::Arc;

use crate::error::{DataFusionError, Result, _plan_err, _schema_err};
use crate::{
    field_not_found, unqualified_field_not_found, Column, FunctionalDependencies,
    SchemaError, TableReference,
};

use arrow::compute::can_cast_types;
use arrow::datatypes::{DataType, Field, FieldRef, Fields, Schema, SchemaRef};
use arrow_schema::SchemaBuilder;

/// A reference-counted reference to a [DFSchema].
pub type DFSchemaRef = Arc<DFSchema>;

/// DFSchema wraps an Arrow schema and adds relation names.
///
/// The schema may hold the fields across multiple tables. Some fields may be
/// qualified and some unqualified. A qualified field is a field that has a
/// relation name associated with it.
///
/// Unqualified fields must be unique not only amongst themselves, but also must
/// have a distinct name from any qualified field names. This allows finding a
/// qualified field by name to be possible, so long as there aren't multiple
/// qualified fields with the same name.
///
/// There is an alias to `Arc<DFSchema>` named [DFSchemaRef].
///
/// # Creating qualified schemas
///
/// Use [DFSchema::try_from_qualified_schema] to create a qualified schema from
/// an Arrow schema.
///
/// ```rust
/// use datafusion_common::{DFSchema, Column};
/// use arrow_schema::{DataType, Field, Schema};
///
/// let arrow_schema = Schema::new(vec![
///    Field::new("c1", DataType::Int32, false),
/// ]);
///
/// let df_schema = DFSchema::try_from_qualified_schema("t1", &arrow_schema).unwrap();
/// let column = Column::from_qualified_name("t1.c1");
/// assert!(df_schema.has_column(&column));
///
/// // Can also access qualified fields with unqualified name, if it's unambiguous
/// let column = Column::from_qualified_name("c1");
/// assert!(df_schema.has_column(&column));
/// ```
///
/// # Creating unqualified schemas
///
/// Create an unqualified schema using TryFrom:
///
/// ```rust
/// use datafusion_common::{DFSchema, Column};
/// use arrow_schema::{DataType, Field, Schema};
///
/// let arrow_schema = Schema::new(vec![
///    Field::new("c1", DataType::Int32, false),
/// ]);
///
/// let df_schema = DFSchema::try_from(arrow_schema).unwrap();
/// let column = Column::new_unqualified("c1");
/// assert!(df_schema.has_column(&column));
/// ```
///
/// # Converting back to Arrow schema
///
/// Use the `Into` trait to convert `DFSchema` into an Arrow schema:
///
/// ```rust
/// use datafusion_common::DFSchema;
/// use arrow_schema::Schema;
/// use arrow::datatypes::Field;
/// use std::collections::HashMap;
///
/// let df_schema = DFSchema::from_unqualified_fields(vec![
///    Field::new("c1", arrow::datatypes::DataType::Int32, false),
/// ].into(),HashMap::new()).unwrap();
/// let schema = Schema::from(df_schema);
/// assert_eq!(schema.fields().len(), 1);
/// ```
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct DFSchema {
    /// Inner Arrow schema reference.
    inner: SchemaRef,
    /// Optional qualifiers for each column in this schema. In the same order as
    /// the `self.inner.fields()`
    field_qualifiers: Vec<Option<TableReference>>,
    /// Stores functional dependencies in the schema.
    functional_dependencies: FunctionalDependencies,
}

impl DFSchema {
    /// Creates an empty `DFSchema`
    pub fn empty() -> Self {
        Self {
            inner: Arc::new(Schema::new([])),
            field_qualifiers: vec![],
            functional_dependencies: FunctionalDependencies::empty(),
        }
    }

    /// Return a reference to the inner Arrow [`Schema`]
    ///
    /// Note this does not have the qualifier information
    pub fn as_arrow(&self) -> &Schema {
        self.inner.as_ref()
    }

    /// Return a reference to the inner Arrow [`SchemaRef`]
    ///
    /// Note this does not have the qualifier information
    pub fn inner(&self) -> &SchemaRef {
        &self.inner
    }

    /// Create a `DFSchema` from an Arrow schema where all the fields have a given qualifier
    pub fn new_with_metadata(
        qualified_fields: Vec<(Option<TableReference>, Arc<Field>)>,
        metadata: HashMap<String, String>,
    ) -> Result<Self> {
        let (qualifiers, fields): (Vec<Option<TableReference>>, Vec<Arc<Field>>) =
            qualified_fields.into_iter().unzip();

        let schema = Arc::new(Schema::new_with_metadata(fields, metadata));

        let dfschema = Self {
            inner: schema,
            field_qualifiers: qualifiers,
            functional_dependencies: FunctionalDependencies::empty(),
        };
        dfschema.check_names()?;
        Ok(dfschema)
    }

    /// Create a new `DFSchema` from a list of Arrow [Field]s
    #[allow(deprecated)]
    pub fn from_unqualified_fields(
        fields: Fields,
        metadata: HashMap<String, String>,
    ) -> Result<Self> {
        Self::from_unqualifed_fields(fields, metadata)
    }

    /// Create a new `DFSchema` from a list of Arrow [Field]s
    #[deprecated(
        since = "40.0.0",
        note = "Please use `from_unqualified_fields` instead (this one's name is a typo). This method is subject to be removed soon"
    )]
    pub fn from_unqualifed_fields(
        fields: Fields,
        metadata: HashMap<String, String>,
    ) -> Result<Self> {
        let field_count = fields.len();
        let schema = Arc::new(Schema::new_with_metadata(fields, metadata));
        let dfschema = Self {
            inner: schema,
            field_qualifiers: vec![None; field_count],
            functional_dependencies: FunctionalDependencies::empty(),
        };
        dfschema.check_names()?;
        Ok(dfschema)
    }

    /// Create a `DFSchema` from an Arrow schema and a given qualifier
    ///
    /// To create a schema from an Arrow schema without a qualifier, use
    /// `DFSchema::try_from`.
    pub fn try_from_qualified_schema(
        qualifier: impl Into<TableReference>,
        schema: &Schema,
    ) -> Result<Self> {
        let qualifier = qualifier.into();
        let schema = DFSchema {
            inner: schema.clone().into(),
            field_qualifiers: vec![Some(qualifier); schema.fields.len()],
            functional_dependencies: FunctionalDependencies::empty(),
        };
        schema.check_names()?;
        Ok(schema)
    }

    /// Create a `DFSchema` from an Arrow schema where all the fields have a given qualifier
    pub fn from_field_specific_qualified_schema(
        qualifiers: Vec<Option<TableReference>>,
        schema: &SchemaRef,
    ) -> Result<Self> {
        let dfschema = Self {
            inner: Arc::clone(schema),
            field_qualifiers: qualifiers,
            functional_dependencies: FunctionalDependencies::empty(),
        };
        dfschema.check_names()?;
        Ok(dfschema)
    }

    /// Check if the schema have some fields with the same name
    pub fn check_names(&self) -> Result<()> {
        let mut qualified_names = BTreeSet::new();
        let mut unqualified_names = BTreeSet::new();

        for (field, qualifier) in self.inner.fields().iter().zip(&self.field_qualifiers) {
            if let Some(qualifier) = qualifier {
                if !qualified_names.insert((qualifier, field.name())) {
                    return _schema_err!(SchemaError::DuplicateQualifiedField {
                        qualifier: Box::new(qualifier.clone()),
                        name: field.name().to_string(),
                    });
                }
            } else if !unqualified_names.insert(field.name()) {
                return _schema_err!(SchemaError::DuplicateUnqualifiedField {
                    name: field.name().to_string()
                });
            }
        }

        for (qualifier, name) in qualified_names {
            if unqualified_names.contains(name) {
                return _schema_err!(SchemaError::AmbiguousReference {
                    field: Column::new(Some(qualifier.clone()), name)
                });
            }
        }
        Ok(())
    }

    /// Assigns functional dependencies.
    pub fn with_functional_dependencies(
        mut self,
        functional_dependencies: FunctionalDependencies,
    ) -> Result<Self> {
        if functional_dependencies.is_valid(self.inner.fields.len()) {
            self.functional_dependencies = functional_dependencies;
            Ok(self)
        } else {
            _plan_err!(
                "Invalid functional dependency: {:?}",
                functional_dependencies
            )
        }
    }

    /// Create a new schema that contains the fields from this schema followed by the fields
    /// from the supplied schema. An error will be returned if there are duplicate field names.
    pub fn join(&self, schema: &DFSchema) -> Result<Self> {
        let mut schema_builder = SchemaBuilder::new();
        schema_builder.extend(self.inner.fields().iter().cloned());
        schema_builder.extend(schema.fields().iter().cloned());
        let new_schema = schema_builder.finish();

        let mut new_metadata = self.inner.metadata.clone();
        new_metadata.extend(schema.inner.metadata.clone());
        let new_schema_with_metadata = new_schema.with_metadata(new_metadata);

        let mut new_qualifiers = self.field_qualifiers.clone();
        new_qualifiers.extend_from_slice(schema.field_qualifiers.as_slice());

        let new_self = Self {
            inner: Arc::new(new_schema_with_metadata),
            field_qualifiers: new_qualifiers,
            functional_dependencies: FunctionalDependencies::empty(),
        };
        new_self.check_names()?;
        Ok(new_self)
    }

    /// Modify this schema by appending the fields from the supplied schema, ignoring any
    /// duplicate fields.
    pub fn merge(&mut self, other_schema: &DFSchema) {
        if other_schema.inner.fields.is_empty() {
            return;
        }

        let self_fields: HashSet<(Option<&TableReference>, &FieldRef)> =
            self.iter().collect();
        let self_unqualified_names: HashSet<&str> = self
            .inner
            .fields
            .iter()
            .map(|field| field.name().as_str())
            .collect();

        let mut schema_builder = SchemaBuilder::from(self.inner.fields.clone());
        let mut qualifiers = Vec::new();
        for (qualifier, field) in other_schema.iter() {
            // skip duplicate columns
            let duplicated_field = match qualifier {
                Some(q) => self_fields.contains(&(Some(q), field)),
                // for unqualified columns, check as unqualified name
                None => self_unqualified_names.contains(field.name().as_str()),
            };
            if !duplicated_field {
                schema_builder.push(Arc::clone(field));
                qualifiers.push(qualifier.cloned());
            }
        }
        let mut metadata = self.inner.metadata.clone();
        metadata.extend(other_schema.inner.metadata.clone());

        let finished = schema_builder.finish();
        let finished_with_metadata = finished.with_metadata(metadata);
        self.inner = finished_with_metadata.into();
        self.field_qualifiers.extend(qualifiers);
    }

    /// Get a list of fields
    pub fn fields(&self) -> &Fields {
        &self.inner.fields
    }

    /// Returns an immutable reference of a specific `Field` instance selected using an
    /// offset within the internal `fields` vector
    pub fn field(&self, i: usize) -> &Field {
        &self.inner.fields[i]
    }

    /// Returns an immutable reference of a specific `Field` instance selected using an
    /// offset within the internal `fields` vector and its qualifier
    pub fn qualified_field(&self, i: usize) -> (Option<&TableReference>, &Field) {
        (self.field_qualifiers[i].as_ref(), self.field(i))
    }

    pub fn index_of_column_by_name(
        &self,
        qualifier: Option<&TableReference>,
        name: &str,
    ) -> Option<usize> {
        let mut matches = self
            .iter()
            .enumerate()
            .filter(|(_, (q, f))| match (qualifier, q) {
                // field to lookup is qualified.
                // current field is qualified and not shared between relations, compare both
                // qualifier and name.
                (Some(q), Some(field_q)) => q.resolved_eq(field_q) && f.name() == name,
                // field to lookup is qualified but current field is unqualified.
                (Some(_), None) => false,
                // field to lookup is unqualified, no need to compare qualifier
                (None, Some(_)) | (None, None) => f.name() == name,
            })
            .map(|(idx, _)| idx);
        matches.next()
    }

    /// Find the index of the column with the given qualifier and name,
    /// returning `None` if not found
    ///
    /// See [Self::index_of_column] for a version that returns an error if the
    /// column is not found
    pub fn maybe_index_of_column(&self, col: &Column) -> Option<usize> {
        self.index_of_column_by_name(col.relation.as_ref(), &col.name)
    }

    /// Find the index of the column with the given qualifier and name,
    /// returning `Err` if not found
    ///
    /// See [Self::maybe_index_of_column] for a version that returns `None` if
    /// the column is not found
    pub fn index_of_column(&self, col: &Column) -> Result<usize> {
        self.maybe_index_of_column(col)
            .ok_or_else(|| field_not_found(col.relation.clone(), &col.name, self))
    }

    /// Check if the column is in the current schema
    pub fn is_column_from_schema(&self, col: &Column) -> bool {
        self.index_of_column_by_name(col.relation.as_ref(), &col.name)
            .is_some()
    }

    /// Find the field with the given name
    pub fn field_with_name(
        &self,
        qualifier: Option<&TableReference>,
        name: &str,
    ) -> Result<&Field> {
        if let Some(qualifier) = qualifier {
            self.field_with_qualified_name(qualifier, name)
        } else {
            self.field_with_unqualified_name(name)
        }
    }

    /// Find the qualified field with the given name
    pub fn qualified_field_with_name(
        &self,
        qualifier: Option<&TableReference>,
        name: &str,
    ) -> Result<(Option<&TableReference>, &Field)> {
        if let Some(qualifier) = qualifier {
            let idx = self
                .index_of_column_by_name(Some(qualifier), name)
                .ok_or_else(|| field_not_found(Some(qualifier.clone()), name, self))?;
            Ok((self.field_qualifiers[idx].as_ref(), self.field(idx)))
        } else {
            self.qualified_field_with_unqualified_name(name)
        }
    }

    /// Find all fields having the given qualifier
    pub fn fields_with_qualified(&self, qualifier: &TableReference) -> Vec<&Field> {
        self.iter()
            .filter(|(q, _)| q.map(|q| q.eq(qualifier)).unwrap_or(false))
            .map(|(_, f)| f.as_ref())
            .collect()
    }

    /// Find all fields indices having the given qualifier
    pub fn fields_indices_with_qualified(
        &self,
        qualifier: &TableReference,
    ) -> Vec<usize> {
        self.iter()
            .enumerate()
            .filter_map(|(idx, (q, _))| q.and_then(|q| q.eq(qualifier).then_some(idx)))
            .collect()
    }

    /// Find all fields that match the given name
    pub fn fields_with_unqualified_name(&self, name: &str) -> Vec<&Field> {
        self.fields()
            .iter()
            .filter(|field| field.name() == name)
            .map(|f| f.as_ref())
            .collect()
    }

    /// Find all fields that match the given name and return them with their qualifier
    pub fn qualified_fields_with_unqualified_name(
        &self,
        name: &str,
    ) -> Vec<(Option<&TableReference>, &Field)> {
        self.iter()
            .filter(|(_, field)| field.name() == name)
            .map(|(qualifier, field)| (qualifier, field.as_ref()))
            .collect()
    }

    /// Find all fields that match the given name and convert to column
    pub fn columns_with_unqualified_name(&self, name: &str) -> Vec<Column> {
        self.iter()
            .filter(|(_, field)| field.name() == name)
            .map(|(qualifier, field)| Column::new(qualifier.cloned(), field.name()))
            .collect()
    }

    /// Return all `Column`s for the schema
    pub fn columns(&self) -> Vec<Column> {
        self.iter()
            .map(|(qualifier, field)| {
                Column::new(qualifier.cloned(), field.name().clone())
            })
            .collect()
    }

    /// Find the qualified field with the given unqualified name
    pub fn qualified_field_with_unqualified_name(
        &self,
        name: &str,
    ) -> Result<(Option<&TableReference>, &Field)> {
        let matches = self.qualified_fields_with_unqualified_name(name);
        match matches.len() {
            0 => Err(unqualified_field_not_found(name, self)),
            1 => Ok((matches[0].0, (matches[0].1))),
            _ => {
                // When `matches` size > 1, it doesn't necessarily mean an `ambiguous name` problem.
                // Because name may generate from Alias/... . It means that it don't own qualifier.
                // For example:
                //             Join on id = b.id
                // Project a.id as id   TableScan b id
                // In this case, there isn't `ambiguous name` problem. When `matches` just contains
                // one field without qualifier, we should return it.
                let fields_without_qualifier = matches
                    .iter()
                    .filter(|(q, _)| q.is_none())
                    .collect::<Vec<_>>();
                if fields_without_qualifier.len() == 1 {
                    Ok((fields_without_qualifier[0].0, fields_without_qualifier[0].1))
                } else {
                    _schema_err!(SchemaError::AmbiguousReference {
                        field: Column {
                            relation: None,
                            name: name.to_string(),
                        },
                    })
                }
            }
        }
    }

    /// Find the field with the given name
    pub fn field_with_unqualified_name(&self, name: &str) -> Result<&Field> {
        self.qualified_field_with_unqualified_name(name)
            .map(|(_, field)| field)
    }

    /// Find the field with the given qualified name
    pub fn field_with_qualified_name(
        &self,
        qualifier: &TableReference,
        name: &str,
    ) -> Result<&Field> {
        let idx = self
            .index_of_column_by_name(Some(qualifier), name)
            .ok_or_else(|| field_not_found(Some(qualifier.clone()), name, self))?;

        Ok(self.field(idx))
    }

    /// Find the field with the given qualified column
    pub fn field_from_column(&self, column: &Column) -> Result<&Field> {
        match &column.relation {
            Some(r) => self.field_with_qualified_name(r, &column.name),
            None => self.field_with_unqualified_name(&column.name),
        }
    }

    /// Find the field with the given qualified column
    pub fn qualified_field_from_column(
        &self,
        column: &Column,
    ) -> Result<(Option<&TableReference>, &Field)> {
        self.qualified_field_with_name(column.relation.as_ref(), &column.name)
    }

    /// Find if the field exists with the given name
    pub fn has_column_with_unqualified_name(&self, name: &str) -> bool {
        self.fields().iter().any(|field| field.name() == name)
    }

    /// Find if the field exists with the given qualified name
    pub fn has_column_with_qualified_name(
        &self,
        qualifier: &TableReference,
        name: &str,
    ) -> bool {
        self.iter()
            .any(|(q, f)| q.map(|q| q.eq(qualifier)).unwrap_or(false) && f.name() == name)
    }

    /// Find if the field exists with the given qualified column
    pub fn has_column(&self, column: &Column) -> bool {
        match &column.relation {
            Some(r) => self.has_column_with_qualified_name(r, &column.name),
            None => self.has_column_with_unqualified_name(&column.name),
        }
    }

    /// Check to see if unqualified field names matches field names in Arrow schema
    pub fn matches_arrow_schema(&self, arrow_schema: &Schema) -> bool {
        self.inner
            .fields
            .iter()
            .zip(arrow_schema.fields().iter())
            .all(|(dffield, arrowfield)| dffield.name() == arrowfield.name())
    }

    /// Check to see if fields in 2 Arrow schemas are compatible
    pub fn check_arrow_schema_type_compatible(
        &self,
        arrow_schema: &Schema,
    ) -> Result<()> {
        let self_arrow_schema: Schema = self.into();
        self_arrow_schema
            .fields()
            .iter()
            .zip(arrow_schema.fields().iter())
            .try_for_each(|(l_field, r_field)| {
                if !can_cast_types(r_field.data_type(), l_field.data_type()) {
                    _plan_err!("Column {} (type: {}) is not compatible with column {} (type: {})",
                                r_field.name(),
                                r_field.data_type(),
                                l_field.name(),
                                l_field.data_type())
                } else {
                    Ok(())
                }
            })
    }

    /// Returns true if the two schemas have the same qualified named
    /// fields with logically equivalent data types. Returns false otherwise.
    ///
    /// Use [DFSchema]::equivalent_names_and_types for stricter semantic type
    /// equivalence checking.
    pub fn logically_equivalent_names_and_types(&self, other: &Self) -> bool {
        if self.fields().len() != other.fields().len() {
            return false;
        }
        let self_fields = self.iter();
        let other_fields = other.iter();
        self_fields.zip(other_fields).all(|((q1, f1), (q2, f2))| {
            q1 == q2
                && f1.name() == f2.name()
                && Self::datatype_is_logically_equal(f1.data_type(), f2.data_type())
        })
    }

    /// Returns true if the two schemas have the same qualified named
    /// fields with the same data types. Returns false otherwise.
    ///
    /// This is a specialized version of Eq that ignores differences
    /// in nullability and metadata.
    ///
    /// Use [DFSchema]::logically_equivalent_names_and_types for a weaker
    /// logical type checking, which for example would consider a dictionary
    /// encoded UTF8 array to be equivalent to a plain UTF8 array.
    pub fn equivalent_names_and_types(&self, other: &Self) -> bool {
        if self.fields().len() != other.fields().len() {
            return false;
        }
        let self_fields = self.iter();
        let other_fields = other.iter();
        self_fields.zip(other_fields).all(|((q1, f1), (q2, f2))| {
            q1 == q2
                && f1.name() == f2.name()
                && Self::datatype_is_semantically_equal(f1.data_type(), f2.data_type())
        })
    }

    /// Checks if two [`DataType`]s are logically equal. This is a notably weaker constraint
    /// than datatype_is_semantically_equal in that a Dictionary<K,V> type is logically
    /// equal to a plain V type, but not semantically equal. Dictionary<K1, V1> is also
    /// logically equal to Dictionary<K2, V1>.
    pub fn datatype_is_logically_equal(dt1: &DataType, dt2: &DataType) -> bool {
        // check nested fields
        match (dt1, dt2) {
            (DataType::Dictionary(_, v1), DataType::Dictionary(_, v2)) => {
                v1.as_ref() == v2.as_ref()
            }
            (DataType::Dictionary(_, v1), othertype) => v1.as_ref() == othertype,
            (othertype, DataType::Dictionary(_, v1)) => v1.as_ref() == othertype,
            (DataType::List(f1), DataType::List(f2))
            | (DataType::LargeList(f1), DataType::LargeList(f2))
            | (DataType::FixedSizeList(f1, _), DataType::FixedSizeList(f2, _))
            | (DataType::Map(f1, _), DataType::Map(f2, _)) => {
                Self::field_is_logically_equal(f1, f2)
            }
            (DataType::Struct(fields1), DataType::Struct(fields2)) => {
                let iter1 = fields1.iter();
                let iter2 = fields2.iter();
                fields1.len() == fields2.len() &&
                        // all fields have to be the same
                    iter1
                    .zip(iter2)
                        .all(|(f1, f2)| Self::field_is_logically_equal(f1, f2))
            }
            (DataType::Union(fields1, _), DataType::Union(fields2, _)) => {
                let iter1 = fields1.iter();
                let iter2 = fields2.iter();
                fields1.len() == fields2.len() &&
                    // all fields have to be the same
                    iter1
                        .zip(iter2)
                        .all(|((t1, f1), (t2, f2))| t1 == t2 && Self::field_is_logically_equal(f1, f2))
            }
            _ => dt1 == dt2,
        }
    }

    /// Returns true of two [`DataType`]s are semantically equal (same
    /// name and type), ignoring both metadata and nullability.
    ///
    /// request to upstream: <https://github.com/apache/arrow-rs/issues/3199>
    fn datatype_is_semantically_equal(dt1: &DataType, dt2: &DataType) -> bool {
        // check nested fields
        match (dt1, dt2) {
            (DataType::Dictionary(k1, v1), DataType::Dictionary(k2, v2)) => {
                Self::datatype_is_semantically_equal(k1.as_ref(), k2.as_ref())
                    && Self::datatype_is_semantically_equal(v1.as_ref(), v2.as_ref())
            }
            (DataType::List(f1), DataType::List(f2))
            | (DataType::LargeList(f1), DataType::LargeList(f2))
            | (DataType::FixedSizeList(f1, _), DataType::FixedSizeList(f2, _))
            | (DataType::Map(f1, _), DataType::Map(f2, _)) => {
                Self::field_is_semantically_equal(f1, f2)
            }
            (DataType::Struct(fields1), DataType::Struct(fields2)) => {
                let iter1 = fields1.iter();
                let iter2 = fields2.iter();
                fields1.len() == fields2.len() &&
                        // all fields have to be the same
                    iter1
                    .zip(iter2)
                        .all(|(f1, f2)| Self::field_is_semantically_equal(f1, f2))
            }
            (DataType::Union(fields1, _), DataType::Union(fields2, _)) => {
                let iter1 = fields1.iter();
                let iter2 = fields2.iter();
                fields1.len() == fields2.len() &&
                    // all fields have to be the same
                    iter1
                        .zip(iter2)
                        .all(|((t1, f1), (t2, f2))| t1 == t2 && Self::field_is_semantically_equal(f1, f2))
            }
            (
                DataType::Decimal128(_l_precision, _l_scale),
                DataType::Decimal128(_r_precision, _r_scale),
            ) => true,
            (
                DataType::Decimal256(_l_precision, _l_scale),
                DataType::Decimal256(_r_precision, _r_scale),
            ) => true,
            _ => dt1 == dt2,
        }
    }

    fn field_is_logically_equal(f1: &Field, f2: &Field) -> bool {
        f1.name() == f2.name()
            && Self::datatype_is_logically_equal(f1.data_type(), f2.data_type())
    }

    fn field_is_semantically_equal(f1: &Field, f2: &Field) -> bool {
        f1.name() == f2.name()
            && Self::datatype_is_semantically_equal(f1.data_type(), f2.data_type())
    }

    /// Strip all field qualifier in schema
    pub fn strip_qualifiers(self) -> Self {
        DFSchema {
            field_qualifiers: vec![None; self.inner.fields.len()],
            inner: self.inner,
            functional_dependencies: self.functional_dependencies,
        }
    }

    /// Replace all field qualifier with new value in schema
    pub fn replace_qualifier(self, qualifier: impl Into<TableReference>) -> Self {
        let qualifier = qualifier.into();
        DFSchema {
            field_qualifiers: vec![Some(qualifier); self.inner.fields.len()],
            inner: self.inner,
            functional_dependencies: self.functional_dependencies,
        }
    }

    /// Get list of fully-qualified field names in this schema
    pub fn field_names(&self) -> Vec<String> {
        self.iter()
            .map(|(qualifier, field)| qualified_name(qualifier, field.name()))
            .collect::<Vec<_>>()
    }

    /// Get metadata of this schema
    pub fn metadata(&self) -> &HashMap<String, String> {
        &self.inner.metadata
    }

    /// Get functional dependencies
    pub fn functional_dependencies(&self) -> &FunctionalDependencies {
        &self.functional_dependencies
    }

    /// Iterate over the qualifiers and fields in the DFSchema
    pub fn iter(&self) -> impl Iterator<Item = (Option<&TableReference>, &FieldRef)> {
        self.field_qualifiers
            .iter()
            .zip(self.inner.fields().iter())
            .map(|(qualifier, field)| (qualifier.as_ref(), field))
    }
}

impl From<DFSchema> for Schema {
    /// Convert DFSchema into a Schema
    fn from(df_schema: DFSchema) -> Self {
        let fields: Fields = df_schema.inner.fields.clone();
        Schema::new_with_metadata(fields, df_schema.inner.metadata.clone())
    }
}

impl From<&DFSchema> for Schema {
    /// Convert DFSchema reference into a Schema
    fn from(df_schema: &DFSchema) -> Self {
        let fields: Fields = df_schema.inner.fields.clone();
        Schema::new_with_metadata(fields, df_schema.inner.metadata.clone())
    }
}

/// Allow DFSchema to be converted into an Arrow `&Schema`
impl AsRef<Schema> for DFSchema {
    fn as_ref(&self) -> &Schema {
        self.as_arrow()
    }
}

/// Allow DFSchema to be converted into an Arrow `&SchemaRef` (to clone, for
/// example)
impl AsRef<SchemaRef> for DFSchema {
    fn as_ref(&self) -> &SchemaRef {
        self.inner()
    }
}

/// Create a `DFSchema` from an Arrow schema
impl TryFrom<Schema> for DFSchema {
    type Error = DataFusionError;
    fn try_from(schema: Schema) -> Result<Self, Self::Error> {
        Self::try_from(Arc::new(schema))
    }
}

impl TryFrom<SchemaRef> for DFSchema {
    type Error = DataFusionError;
    fn try_from(schema: SchemaRef) -> Result<Self, Self::Error> {
        let field_count = schema.fields.len();
        let dfschema = Self {
            inner: schema,
            field_qualifiers: vec![None; field_count],
            functional_dependencies: FunctionalDependencies::empty(),
        };
        Ok(dfschema)
    }
}

impl From<DFSchema> for SchemaRef {
    fn from(df_schema: DFSchema) -> Self {
        SchemaRef::new(df_schema.into())
    }
}

// Hashing refers to a subset of fields considered in PartialEq.
impl Hash for DFSchema {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        self.inner.fields.hash(state);
        self.inner.metadata.len().hash(state); // HashMap is not hashable
    }
}

/// Convenience trait to convert Schema like things to DFSchema and DFSchemaRef with fewer keystrokes
pub trait ToDFSchema
where
    Self: Sized,
{
    /// Attempt to create a DSSchema
    fn to_dfschema(self) -> Result<DFSchema>;

    /// Attempt to create a DSSchemaRef
    fn to_dfschema_ref(self) -> Result<DFSchemaRef> {
        Ok(Arc::new(self.to_dfschema()?))
    }
}

impl ToDFSchema for Schema {
    fn to_dfschema(self) -> Result<DFSchema> {
        DFSchema::try_from(self)
    }
}

impl ToDFSchema for SchemaRef {
    fn to_dfschema(self) -> Result<DFSchema> {
        DFSchema::try_from(self)
    }
}

impl ToDFSchema for Vec<Field> {
    fn to_dfschema(self) -> Result<DFSchema> {
        let field_count = self.len();
        let schema = Schema {
            fields: self.into(),
            metadata: HashMap::new(),
        };
        let dfschema = DFSchema {
            inner: schema.into(),
            field_qualifiers: vec![None; field_count],
            functional_dependencies: FunctionalDependencies::empty(),
        };
        Ok(dfschema)
    }
}

impl Display for DFSchema {
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
        write!(
            f,
            "fields:[{}], metadata:{:?}",
            self.iter()
                .map(|(q, f)| qualified_name(q, f.name()))
                .collect::<Vec<String>>()
                .join(", "),
            self.inner.metadata
        )
    }
}

/// Provides schema information needed by certain methods of `Expr`
/// (defined in the datafusion-common crate).
///
/// Note that this trait is implemented for &[DFSchema] which is
/// widely used in the DataFusion codebase.
pub trait ExprSchema: std::fmt::Debug {
    /// Is this column reference nullable?
    fn nullable(&self, col: &Column) -> Result<bool>;

    /// What is the datatype of this column?
    fn data_type(&self, col: &Column) -> Result<&DataType>;

    /// Returns the column's optional metadata.
    fn metadata(&self, col: &Column) -> Result<&HashMap<String, String>>;

    /// Return the coulmn's datatype and nullability
    fn data_type_and_nullable(&self, col: &Column) -> Result<(&DataType, bool)>;
}

// Implement `ExprSchema` for `Arc<DFSchema>`
impl<P: AsRef<DFSchema> + std::fmt::Debug> ExprSchema for P {
    fn nullable(&self, col: &Column) -> Result<bool> {
        self.as_ref().nullable(col)
    }

    fn data_type(&self, col: &Column) -> Result<&DataType> {
        self.as_ref().data_type(col)
    }

    fn metadata(&self, col: &Column) -> Result<&HashMap<String, String>> {
        ExprSchema::metadata(self.as_ref(), col)
    }

    fn data_type_and_nullable(&self, col: &Column) -> Result<(&DataType, bool)> {
        self.as_ref().data_type_and_nullable(col)
    }
}

impl ExprSchema for DFSchema {
    fn nullable(&self, col: &Column) -> Result<bool> {
        Ok(self.field_from_column(col)?.is_nullable())
    }

    fn data_type(&self, col: &Column) -> Result<&DataType> {
        Ok(self.field_from_column(col)?.data_type())
    }

    fn metadata(&self, col: &Column) -> Result<&HashMap<String, String>> {
        Ok(self.field_from_column(col)?.metadata())
    }

    fn data_type_and_nullable(&self, col: &Column) -> Result<(&DataType, bool)> {
        let field = self.field_from_column(col)?;
        Ok((field.data_type(), field.is_nullable()))
    }
}

/// DataFusion-specific extensions to [`Schema`].
pub trait SchemaExt {
    /// This is a specialized version of Eq that ignores differences
    /// in nullability and metadata.
    ///
    /// It works the same as [`DFSchema::equivalent_names_and_types`].
    fn equivalent_names_and_types(&self, other: &Self) -> bool;

    /// Returns true if the two schemas have the same qualified named
    /// fields with logically equivalent data types. Returns false otherwise.
    ///
    /// Use [DFSchema]::equivalent_names_and_types for stricter semantic type
    /// equivalence checking.
    fn logically_equivalent_names_and_types(&self, other: &Self) -> bool;
}

impl SchemaExt for Schema {
    fn equivalent_names_and_types(&self, other: &Self) -> bool {
        if self.fields().len() != other.fields().len() {
            return false;
        }

        self.fields()
            .iter()
            .zip(other.fields().iter())
            .all(|(f1, f2)| {
                f1.name() == f2.name()
                    && DFSchema::datatype_is_semantically_equal(
                        f1.data_type(),
                        f2.data_type(),
                    )
            })
    }

    fn logically_equivalent_names_and_types(&self, other: &Self) -> bool {
        if self.fields().len() != other.fields().len() {
            return false;
        }

        self.fields()
            .iter()
            .zip(other.fields().iter())
            .all(|(f1, f2)| {
                f1.name() == f2.name()
                    && DFSchema::datatype_is_logically_equal(
                        f1.data_type(),
                        f2.data_type(),
                    )
            })
    }
}

pub fn qualified_name(qualifier: Option<&TableReference>, name: &str) -> String {
    match qualifier {
        Some(q) => format!("{}.{}", q, name),
        None => name.to_string(),
    }
}

#[cfg(test)]
mod tests {
    use crate::assert_contains;

    use super::*;

    #[test]
    fn qualifier_in_name() -> Result<()> {
        let col = Column::from_name("t1.c0");
        let schema = DFSchema::try_from_qualified_schema("t1", &test_schema_1())?;
        // lookup with unqualified name "t1.c0"
        let err = schema.index_of_column(&col).unwrap_err();
        assert_eq!(
            err.strip_backtrace(),
            "Schema error: No field named \"t1.c0\". Valid fields are t1.c0, t1.c1."
        );
        Ok(())
    }

    #[test]
    fn quoted_qualifiers_in_name() -> Result<()> {
        let col = Column::from_name("t1.c0");
        let schema = DFSchema::try_from_qualified_schema(
            "t1",
            &Schema::new(vec![
                Field::new("CapitalColumn", DataType::Boolean, true),
                Field::new("field.with.period", DataType::Boolean, true),
            ]),
        )?;

        // lookup with unqualified name "t1.c0"
        let err = schema.index_of_column(&col).unwrap_err();
        assert_eq!(
            err.strip_backtrace(),
            "Schema error: No field named \"t1.c0\". Valid fields are t1.\"CapitalColumn\", t1.\"field.with.period\"."
        );
        Ok(())
    }

    #[test]
    fn from_unqualified_schema() -> Result<()> {
        let schema = DFSchema::try_from(test_schema_1())?;
        assert_eq!("fields:[c0, c1], metadata:{}", schema.to_string());
        Ok(())
    }

    #[test]
    fn from_qualified_schema() -> Result<()> {
        let schema = DFSchema::try_from_qualified_schema("t1", &test_schema_1())?;
        assert_eq!("fields:[t1.c0, t1.c1], metadata:{}", schema.to_string());
        Ok(())
    }

    #[test]
    fn test_from_field_specific_qualified_schema() -> Result<()> {
        let schema = DFSchema::from_field_specific_qualified_schema(
            vec![Some("t1".into()), None],
            &Arc::new(Schema::new(vec![
                Field::new("c0", DataType::Boolean, true),
                Field::new("c1", DataType::Boolean, true),
            ])),
        )?;
        assert_eq!("fields:[t1.c0, c1], metadata:{}", schema.to_string());
        Ok(())
    }

    #[test]
    fn test_from_qualified_fields() -> Result<()> {
        let schema = DFSchema::new_with_metadata(
            vec![
                (
                    Some("t0".into()),
                    Arc::new(Field::new("c0", DataType::Boolean, true)),
                ),
                (None, Arc::new(Field::new("c1", DataType::Boolean, true))),
            ],
            HashMap::new(),
        )?;
        assert_eq!("fields:[t0.c0, c1], metadata:{}", schema.to_string());
        Ok(())
    }

    #[test]
    fn from_qualified_schema_into_arrow_schema() -> Result<()> {
        let schema = DFSchema::try_from_qualified_schema("t1", &test_schema_1())?;
        let arrow_schema: Schema = schema.into();
        let expected = "Field { name: \"c0\", data_type: Boolean, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }, \
        Field { name: \"c1\", data_type: Boolean, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }";
        assert_eq!(expected, arrow_schema.to_string());
        Ok(())
    }

    #[test]
    fn join_qualified() -> Result<()> {
        let left = DFSchema::try_from_qualified_schema("t1", &test_schema_1())?;
        let right = DFSchema::try_from_qualified_schema("t2", &test_schema_1())?;
        let join = left.join(&right)?;
        assert_eq!(
            "fields:[t1.c0, t1.c1, t2.c0, t2.c1], metadata:{}",
            join.to_string()
        );
        // test valid access
        assert!(join
            .field_with_qualified_name(&TableReference::bare("t1"), "c0")
            .is_ok());
        assert!(join
            .field_with_qualified_name(&TableReference::bare("t2"), "c0")
            .is_ok());
        // test invalid access
        assert!(join.field_with_unqualified_name("c0").is_err());
        assert!(join.field_with_unqualified_name("t1.c0").is_err());
        assert!(join.field_with_unqualified_name("t2.c0").is_err());
        Ok(())
    }

    #[test]
    fn join_qualified_duplicate() -> Result<()> {
        let left = DFSchema::try_from_qualified_schema("t1", &test_schema_1())?;
        let right = DFSchema::try_from_qualified_schema("t1", &test_schema_1())?;
        let join = left.join(&right);
        assert_eq!(
            join.unwrap_err().strip_backtrace(),
            "Schema error: Schema contains duplicate qualified field name t1.c0",
        );
        Ok(())
    }

    #[test]
    fn join_unqualified_duplicate() -> Result<()> {
        let left = DFSchema::try_from(test_schema_1())?;
        let right = DFSchema::try_from(test_schema_1())?;
        let join = left.join(&right);
        assert_eq!(
            join.unwrap_err().strip_backtrace(),
            "Schema error: Schema contains duplicate unqualified field name c0"
        );
        Ok(())
    }

    #[test]
    fn join_mixed() -> Result<()> {
        let left = DFSchema::try_from_qualified_schema("t1", &test_schema_1())?;
        let right = DFSchema::try_from(test_schema_2())?;
        let join = left.join(&right)?;
        assert_eq!(
            "fields:[t1.c0, t1.c1, c100, c101], metadata:{}",
            join.to_string()
        );
        // test valid access
        assert!(join
            .field_with_qualified_name(&TableReference::bare("t1"), "c0")
            .is_ok());
        assert!(join.field_with_unqualified_name("c0").is_ok());
        assert!(join.field_with_unqualified_name("c100").is_ok());
        assert!(join.field_with_name(None, "c100").is_ok());
        // test invalid access
        assert!(join.field_with_unqualified_name("t1.c0").is_err());
        assert!(join.field_with_unqualified_name("t1.c100").is_err());
        assert!(join
            .field_with_qualified_name(&TableReference::bare(""), "c100")
            .is_err());
        Ok(())
    }

    #[test]
    fn join_mixed_duplicate() -> Result<()> {
        let left = DFSchema::try_from_qualified_schema("t1", &test_schema_1())?;
        let right = DFSchema::try_from(test_schema_1())?;
        let join = left.join(&right);
        assert_contains!(join.unwrap_err().to_string(),
                         "Schema error: Schema contains qualified \
                          field name t1.c0 and unqualified field name c0 which would be ambiguous");
        Ok(())
    }

    #[test]
    fn helpful_error_messages() -> Result<()> {
        let schema = DFSchema::try_from_qualified_schema("t1", &test_schema_1())?;
        let expected_help = "Valid fields are t1.c0, t1.c1.";
        assert_contains!(
            schema
                .field_with_qualified_name(&TableReference::bare("x"), "y")
                .unwrap_err()
                .to_string(),
            expected_help
        );
        assert_contains!(
            schema
                .field_with_unqualified_name("y")
                .unwrap_err()
                .to_string(),
            expected_help
        );
        assert!(schema.index_of_column_by_name(None, "y").is_none());
        assert!(schema.index_of_column_by_name(None, "t1.c0").is_none());

        Ok(())
    }

    #[test]
    fn select_without_valid_fields() {
        let schema = DFSchema::empty();

        let col = Column::from_qualified_name("t1.c0");
        let err = schema.index_of_column(&col).unwrap_err();
        assert_eq!(err.strip_backtrace(), "Schema error: No field named t1.c0.");

        // the same check without qualifier
        let col = Column::from_name("c0");
        let err = schema.index_of_column(&col).err().unwrap();
        assert_eq!(err.strip_backtrace(), "Schema error: No field named c0.");
    }

    #[test]
    fn into() {
        // Demonstrate how to convert back and forth between Schema, SchemaRef, DFSchema, and DFSchemaRef
        let arrow_schema = Schema::new_with_metadata(
            vec![Field::new("c0", DataType::Int64, true)],
            test_metadata(),
        );
        let arrow_schema_ref = Arc::new(arrow_schema.clone());

        let df_schema = DFSchema {
            inner: Arc::clone(&arrow_schema_ref),
            field_qualifiers: vec![None; arrow_schema_ref.fields.len()],
            functional_dependencies: FunctionalDependencies::empty(),
        };
        let df_schema_ref = Arc::new(df_schema.clone());

        {
            let arrow_schema = arrow_schema.clone();
            let arrow_schema_ref = Arc::clone(&arrow_schema_ref);

            assert_eq!(df_schema, arrow_schema.to_dfschema().unwrap());
            assert_eq!(df_schema, arrow_schema_ref.to_dfschema().unwrap());
        }

        {
            let arrow_schema = arrow_schema.clone();
            let arrow_schema_ref = Arc::clone(&arrow_schema_ref);

            assert_eq!(df_schema_ref, arrow_schema.to_dfschema_ref().unwrap());
            assert_eq!(df_schema_ref, arrow_schema_ref.to_dfschema_ref().unwrap());
        }

        // Now, consume the refs
        assert_eq!(df_schema_ref, arrow_schema.to_dfschema_ref().unwrap());
        assert_eq!(df_schema_ref, arrow_schema_ref.to_dfschema_ref().unwrap());
    }

    fn test_schema_1() -> Schema {
        Schema::new(vec![
            Field::new("c0", DataType::Boolean, true),
            Field::new("c1", DataType::Boolean, true),
        ])
    }
    #[test]
    fn test_dfschema_to_schema_conversion() {
        let mut a_metadata = HashMap::new();
        a_metadata.insert("key".to_string(), "value".to_string());
        let a_field = Field::new("a", DataType::Int64, false).with_metadata(a_metadata);

        let mut b_metadata = HashMap::new();
        b_metadata.insert("key".to_string(), "value".to_string());
        let b_field = Field::new("b", DataType::Int64, false).with_metadata(b_metadata);

        let schema = Arc::new(Schema::new(vec![a_field, b_field]));

        let df_schema = DFSchema {
            inner: Arc::clone(&schema),
            field_qualifiers: vec![None; schema.fields.len()],
            functional_dependencies: FunctionalDependencies::empty(),
        };

        assert_eq!(df_schema.inner.metadata(), schema.metadata())
    }

    #[test]
    fn test_contain_column() -> Result<()> {
        // qualified exists
        {
            let col = Column::from_qualified_name("t1.c0");
            let schema = DFSchema::try_from_qualified_schema("t1", &test_schema_1())?;
            assert!(schema.is_column_from_schema(&col));
        }

        // qualified not exists
        {
            let col = Column::from_qualified_name("t1.c2");
            let schema = DFSchema::try_from_qualified_schema("t1", &test_schema_1())?;
            assert!(!schema.is_column_from_schema(&col));
        }

        // unqualified exists
        {
            let col = Column::from_name("c0");
            let schema = DFSchema::try_from_qualified_schema("t1", &test_schema_1())?;
            assert!(schema.is_column_from_schema(&col));
        }

        // unqualified not exists
        {
            let col = Column::from_name("c2");
            let schema = DFSchema::try_from_qualified_schema("t1", &test_schema_1())?;
            assert!(!schema.is_column_from_schema(&col));
        }

        Ok(())
    }

    fn test_schema_2() -> Schema {
        Schema::new(vec![
            Field::new("c100", DataType::Boolean, true),
            Field::new("c101", DataType::Boolean, true),
        ])
    }

    fn test_metadata() -> HashMap<String, String> {
        test_metadata_n(2)
    }

    fn test_metadata_n(n: usize) -> HashMap<String, String> {
        (0..n).map(|i| (format!("k{i}"), format!("v{i}"))).collect()
    }
}