1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use crate::memory_pool::{MemoryConsumer, MemoryPool, MemoryReservation};
use datafusion_common::{DataFusionError, Result};
use log::debug;
use parking_lot::Mutex;
use std::sync::atomic::{AtomicUsize, Ordering};

/// A [`MemoryPool`] that enforces no limit
#[derive(Debug, Default)]
pub struct UnboundedMemoryPool {
    used: AtomicUsize,
}

impl MemoryPool for UnboundedMemoryPool {
    fn grow(&self, _reservation: &MemoryReservation, additional: usize) {
        self.used.fetch_add(additional, Ordering::Relaxed);
    }

    fn shrink(&self, _reservation: &MemoryReservation, shrink: usize) {
        self.used.fetch_sub(shrink, Ordering::Relaxed);
    }

    fn try_grow(&self, reservation: &MemoryReservation, additional: usize) -> Result<()> {
        self.grow(reservation, additional);
        Ok(())
    }

    fn reserved(&self) -> usize {
        self.used.load(Ordering::Relaxed)
    }
}

/// A [`MemoryPool`] that implements a greedy first-come first-serve limit.
///
/// This pool works well for queries that do not need to spill or have
/// a single spillable operator. See [`GreedyMemoryPool`] if there are
/// multiple spillable operators that all will spill.
#[derive(Debug)]
pub struct GreedyMemoryPool {
    pool_size: usize,
    used: AtomicUsize,
}

impl GreedyMemoryPool {
    /// Allocate up to `limit` bytes
    pub fn new(pool_size: usize) -> Self {
        debug!("Created new GreedyMemoryPool(pool_size={pool_size})");
        Self {
            pool_size,
            used: AtomicUsize::new(0),
        }
    }
}

impl MemoryPool for GreedyMemoryPool {
    fn grow(&self, _reservation: &MemoryReservation, additional: usize) {
        self.used.fetch_add(additional, Ordering::Relaxed);
    }

    fn shrink(&self, _reservation: &MemoryReservation, shrink: usize) {
        self.used.fetch_sub(shrink, Ordering::Relaxed);
    }

    fn try_grow(&self, reservation: &MemoryReservation, additional: usize) -> Result<()> {
        self.used
            .fetch_update(Ordering::Relaxed, Ordering::Relaxed, |used| {
                let new_used = used + additional;
                (new_used <= self.pool_size).then_some(new_used)
            })
            .map_err(|used| {
                insufficient_capacity_err(
                    reservation,
                    additional,
                    self.pool_size.saturating_sub(used),
                )
            })?;
        Ok(())
    }

    fn reserved(&self) -> usize {
        self.used.load(Ordering::Relaxed)
    }
}

/// A [`MemoryPool`] that prevents spillable reservations from using more than
/// an even fraction of the available memory sans any unspillable reservations
/// (i.e. `(pool_size - unspillable_memory) / num_spillable_reservations`)
///
/// This pool works best when you know beforehand the query has
/// multiple spillable operators that will likely all need to
/// spill. Sometimes it will cause spills even when there was
/// sufficient memory (reserved for other operators) to avoid doing
/// so.
///
/// ```text
///    ┌───────────────────────z──────────────────────z───────────────┐
///    │                       z                      z               │
///    │                       z                      z               │
///    │       Spillable       z       Unspillable    z     Free      │
///    │        Memory         z        Memory        z    Memory     │
///    │                       z                      z               │
///    │                       z                      z               │
///    └───────────────────────z──────────────────────z───────────────┘
/// ```
///
/// Unspillable memory is allocated in a first-come, first-serve fashion
#[derive(Debug)]
pub struct FairSpillPool {
    /// The total memory limit
    pool_size: usize,

    state: Mutex<FairSpillPoolState>,
}

#[derive(Debug)]
struct FairSpillPoolState {
    /// The number of consumers that can spill
    num_spill: usize,

    /// The total amount of memory reserved that can be spilled
    spillable: usize,

    /// The total amount of memory reserved by consumers that cannot spill
    unspillable: usize,
}

impl FairSpillPool {
    /// Allocate up to `limit` bytes
    pub fn new(pool_size: usize) -> Self {
        debug!("Created new FairSpillPool(pool_size={pool_size})");
        Self {
            pool_size,
            state: Mutex::new(FairSpillPoolState {
                num_spill: 0,
                spillable: 0,
                unspillable: 0,
            }),
        }
    }
}

impl MemoryPool for FairSpillPool {
    fn register(&self, consumer: &MemoryConsumer) {
        if consumer.can_spill {
            self.state.lock().num_spill += 1;
        }
    }

    fn unregister(&self, consumer: &MemoryConsumer) {
        if consumer.can_spill {
            let mut state = self.state.lock();
            state.num_spill = state.num_spill.checked_sub(1).unwrap();
        }
    }

    fn grow(&self, reservation: &MemoryReservation, additional: usize) {
        let mut state = self.state.lock();
        match reservation.registration.consumer.can_spill {
            true => state.spillable += additional,
            false => state.unspillable += additional,
        }
    }

    fn shrink(&self, reservation: &MemoryReservation, shrink: usize) {
        let mut state = self.state.lock();
        match reservation.registration.consumer.can_spill {
            true => state.spillable -= shrink,
            false => state.unspillable -= shrink,
        }
    }

    fn try_grow(&self, reservation: &MemoryReservation, additional: usize) -> Result<()> {
        let mut state = self.state.lock();

        match reservation.registration.consumer.can_spill {
            true => {
                // The total amount of memory available to spilling consumers
                let spill_available = self.pool_size.saturating_sub(state.unspillable);

                // No spiller may use more than their fraction of the memory available
                let available = spill_available
                    .checked_div(state.num_spill)
                    .unwrap_or(spill_available);

                if reservation.size + additional > available {
                    return Err(insufficient_capacity_err(
                        reservation,
                        additional,
                        available,
                    ));
                }
                state.spillable += additional;
            }
            false => {
                let available = self
                    .pool_size
                    .saturating_sub(state.unspillable + state.spillable);

                if available < additional {
                    return Err(insufficient_capacity_err(
                        reservation,
                        additional,
                        available,
                    ));
                }
                state.unspillable += additional;
            }
        }
        Ok(())
    }

    fn reserved(&self) -> usize {
        let state = self.state.lock();
        state.spillable + state.unspillable
    }
}

fn insufficient_capacity_err(
    reservation: &MemoryReservation,
    additional: usize,
    available: usize,
) -> DataFusionError {
    DataFusionError::ResourcesExhausted(format!("Failed to allocate additional {} bytes for {} with {} bytes already allocated - maximum available is {}", additional, reservation.registration.consumer.name, reservation.size, available))
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::sync::Arc;

    #[test]
    fn test_fair() {
        let pool = Arc::new(FairSpillPool::new(100)) as _;

        let mut r1 = MemoryConsumer::new("unspillable").register(&pool);
        // Can grow beyond capacity of pool
        r1.grow(2000);
        assert_eq!(pool.reserved(), 2000);

        let mut r2 = MemoryConsumer::new("r2")
            .with_can_spill(true)
            .register(&pool);
        // Can grow beyond capacity of pool
        r2.grow(2000);

        assert_eq!(pool.reserved(), 4000);

        let err = r2.try_grow(1).unwrap_err().strip_backtrace();
        assert_eq!(err, "Resources exhausted: Failed to allocate additional 1 bytes for r2 with 2000 bytes already allocated - maximum available is 0");

        let err = r2.try_grow(1).unwrap_err().strip_backtrace();
        assert_eq!(err, "Resources exhausted: Failed to allocate additional 1 bytes for r2 with 2000 bytes already allocated - maximum available is 0");

        r1.shrink(1990);
        r2.shrink(2000);

        assert_eq!(pool.reserved(), 10);

        r1.try_grow(10).unwrap();
        assert_eq!(pool.reserved(), 20);

        // Can grow r2 to 80 as only spilling consumer
        r2.try_grow(80).unwrap();
        assert_eq!(pool.reserved(), 100);

        r2.shrink(70);

        assert_eq!(r1.size(), 20);
        assert_eq!(r2.size(), 10);
        assert_eq!(pool.reserved(), 30);

        let mut r3 = MemoryConsumer::new("r3")
            .with_can_spill(true)
            .register(&pool);

        let err = r3.try_grow(70).unwrap_err().strip_backtrace();
        assert_eq!(err, "Resources exhausted: Failed to allocate additional 70 bytes for r3 with 0 bytes already allocated - maximum available is 40");

        //Shrinking r2 to zero doesn't allow a3 to allocate more than 45
        r2.free();
        let err = r3.try_grow(70).unwrap_err().strip_backtrace();
        assert_eq!(err, "Resources exhausted: Failed to allocate additional 70 bytes for r3 with 0 bytes already allocated - maximum available is 40");

        // But dropping r2 does
        drop(r2);
        assert_eq!(pool.reserved(), 20);
        r3.try_grow(80).unwrap();

        assert_eq!(pool.reserved(), 100);
        r1.free();
        assert_eq!(pool.reserved(), 80);

        let mut r4 = MemoryConsumer::new("s4").register(&pool);
        let err = r4.try_grow(30).unwrap_err().strip_backtrace();
        assert_eq!(err, "Resources exhausted: Failed to allocate additional 30 bytes for s4 with 0 bytes already allocated - maximum available is 20");
    }
}