1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! [`MemoryPool`] for memory management during query execution, [`proxy]` for
//! help with allocation accounting.
use datafusion_common::{internal_err, Result};
use std::{cmp::Ordering, sync::Arc};
mod pool;
pub mod proxy {
pub use datafusion_common::utils::proxy::{RawTableAllocExt, VecAllocExt};
}
pub use pool::*;
/// Tracks and potentially limits memory use across operators during execution.
///
/// # Memory Management Overview
///
/// DataFusion is a streaming query engine, processing most queries without
/// buffering the entire input. Most operators require a fixed amount of memory
/// based on the schema and target batch size. However, certain operations such
/// as sorting and grouping/joining, require buffering intermediate results,
/// which can require memory proportional to the number of input rows.
///
/// Rather than tracking all allocations, DataFusion takes a pragmatic approach:
/// Intermediate memory used as data streams through the system is not accounted
/// (it assumed to be "small") but the large consumers of memory must register
/// and constrain their use. This design trades off the additional code
/// complexity of memory tracking with limiting resource usage.
///
/// When limiting memory with a `MemoryPool` you should typically reserve some
/// overhead (e.g. 10%) for the "small" memory allocations that are not tracked.
///
/// # Memory Management Design
///
/// As explained above, DataFusion's design ONLY limits operators that require
/// "large" amounts of memory (proportional to number of input rows), such as
/// `GroupByHashExec`. It does NOT track and limit memory used internally by
/// other operators such as `ParquetExec` or the `RecordBatch`es that flow
/// between operators.
///
/// In order to avoid allocating memory until the OS or the container system
/// kills the process, DataFusion `ExecutionPlan`s (operators) that consume
/// large amounts of memory must first request their desired allocation from a
/// [`MemoryPool`] before allocating more. The request is typically managed via
/// a [`MemoryReservation`] and [`MemoryConsumer`].
///
/// If the allocation is successful, the operator should proceed and allocate
/// the desired memory. If the allocation fails, the operator must either first
/// free memory (e.g. by spilling to local disk) and try again, or error.
///
/// Note that a `MemoryPool` can be shared by concurrently executing plans,
/// which can be used to control memory usage in a multi-tenant system.
///
/// # Implementing `MemoryPool`
///
/// You can implement a custom allocation policy by implementing the
/// [`MemoryPool`] trait and configuring a `SessionContext` appropriately.
/// However, mDataFusion comes with the following simple memory pool implementations that
/// handle many common cases:
///
/// * [`UnboundedMemoryPool`]: no memory limits (the default)
///
/// * [`GreedyMemoryPool`]: Limits memory usage to a fixed size using a "first
/// come first served" policy
///
/// * [`FairSpillPool`]: Limits memory usage to a fixed size, allocating memory
/// to all spilling operators fairly
pub trait MemoryPool: Send + Sync + std::fmt::Debug {
/// Registers a new [`MemoryConsumer`]
///
/// Note: Subsequent calls to [`Self::grow`] must be made to reserve memory
fn register(&self, _consumer: &MemoryConsumer) {}
/// Records the destruction of a [`MemoryReservation`] with [`MemoryConsumer`]
///
/// Note: Prior calls to [`Self::shrink`] must be made to free any reserved memory
fn unregister(&self, _consumer: &MemoryConsumer) {}
/// Infallibly grow the provided `reservation` by `additional` bytes
///
/// This must always succeed
fn grow(&self, reservation: &MemoryReservation, additional: usize);
/// Infallibly shrink the provided `reservation` by `shrink` bytes
fn shrink(&self, reservation: &MemoryReservation, shrink: usize);
/// Attempt to grow the provided `reservation` by `additional` bytes
///
/// On error the `allocation` will not be increased in size
fn try_grow(&self, reservation: &MemoryReservation, additional: usize) -> Result<()>;
/// Return the total amount of memory reserved
fn reserved(&self) -> usize;
}
/// A memory consumer is a named allocation traced by a particular
/// [`MemoryReservation`] in a [`MemoryPool`]. All allocations are registered to
/// a particular `MemoryConsumer`;
///
/// For help with allocation accounting, see the [proxy] module.
///
/// [proxy]: crate::memory_pool::proxy
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
pub struct MemoryConsumer {
name: String,
can_spill: bool,
}
impl MemoryConsumer {
/// Create a new empty [`MemoryConsumer`] that can be grown using [`MemoryReservation`]
pub fn new(name: impl Into<String>) -> Self {
Self {
name: name.into(),
can_spill: false,
}
}
/// Set whether this allocation can be spilled to disk
pub fn with_can_spill(self, can_spill: bool) -> Self {
Self { can_spill, ..self }
}
/// Returns true if this allocation can spill to disk
pub fn can_spill(&self) -> bool {
self.can_spill
}
/// Returns the name associated with this allocation
pub fn name(&self) -> &str {
&self.name
}
/// Registers this [`MemoryConsumer`] with the provided [`MemoryPool`] returning
/// a [`MemoryReservation`] that can be used to grow or shrink the memory reservation
pub fn register(self, pool: &Arc<dyn MemoryPool>) -> MemoryReservation {
pool.register(&self);
MemoryReservation {
registration: Arc::new(SharedRegistration {
pool: Arc::clone(pool),
consumer: self,
}),
size: 0,
}
}
}
/// A registration of a [`MemoryConsumer`] with a [`MemoryPool`].
///
/// Calls [`MemoryPool::unregister`] on drop to return any memory to
/// the underlying pool.
#[derive(Debug)]
struct SharedRegistration {
pool: Arc<dyn MemoryPool>,
consumer: MemoryConsumer,
}
impl Drop for SharedRegistration {
fn drop(&mut self) {
self.pool.unregister(&self.consumer);
}
}
/// A [`MemoryReservation`] tracks an individual reservation of a
/// number of bytes of memory in a [`MemoryPool`] that is freed back
/// to the pool on drop.
///
/// The reservation can be grown or shrunk over time.
#[derive(Debug)]
pub struct MemoryReservation {
registration: Arc<SharedRegistration>,
size: usize,
}
impl MemoryReservation {
/// Returns the size of this reservation in bytes
pub fn size(&self) -> usize {
self.size
}
/// Returns [MemoryConsumer] for this [MemoryReservation]
pub fn consumer(&self) -> &MemoryConsumer {
&self.registration.consumer
}
/// Frees all bytes from this reservation back to the underlying
/// pool, returning the number of bytes freed.
pub fn free(&mut self) -> usize {
let size = self.size;
if size != 0 {
self.shrink(size)
}
size
}
/// Frees `capacity` bytes from this reservation
///
/// # Panics
///
/// Panics if `capacity` exceeds [`Self::size`]
pub fn shrink(&mut self, capacity: usize) {
let new_size = self.size.checked_sub(capacity).unwrap();
self.registration.pool.shrink(self, capacity);
self.size = new_size
}
/// Tries to free `capacity` bytes from this reservation
/// if `capacity` does not exceed [`Self::size`]
/// Returns new reservation size
/// or error if shrinking capacity is more than allocated size
pub fn try_shrink(&mut self, capacity: usize) -> Result<usize> {
if let Some(new_size) = self.size.checked_sub(capacity) {
self.registration.pool.shrink(self, capacity);
self.size = new_size;
Ok(new_size)
} else {
internal_err!(
"Cannot free the capacity {capacity} out of allocated size {}",
self.size
)
}
}
/// Sets the size of this reservation to `capacity`
pub fn resize(&mut self, capacity: usize) {
match capacity.cmp(&self.size) {
Ordering::Greater => self.grow(capacity - self.size),
Ordering::Less => self.shrink(self.size - capacity),
_ => {}
}
}
/// Try to set the size of this reservation to `capacity`
pub fn try_resize(&mut self, capacity: usize) -> Result<()> {
match capacity.cmp(&self.size) {
Ordering::Greater => self.try_grow(capacity - self.size)?,
Ordering::Less => self.shrink(self.size - capacity),
_ => {}
};
Ok(())
}
/// Increase the size of this reservation by `capacity` bytes
pub fn grow(&mut self, capacity: usize) {
self.registration.pool.grow(self, capacity);
self.size += capacity;
}
/// Try to increase the size of this reservation by `capacity`
/// bytes, returning error if there is insufficient capacity left
/// in the pool.
pub fn try_grow(&mut self, capacity: usize) -> Result<()> {
self.registration.pool.try_grow(self, capacity)?;
self.size += capacity;
Ok(())
}
/// Splits off `capacity` bytes from this [`MemoryReservation`]
/// into a new [`MemoryReservation`] with the same
/// [`MemoryConsumer`].
///
/// This can be useful to free part of this reservation with RAAI
/// style dropping
///
/// # Panics
///
/// Panics if `capacity` exceeds [`Self::size`]
pub fn split(&mut self, capacity: usize) -> MemoryReservation {
self.size = self.size.checked_sub(capacity).unwrap();
Self {
size: capacity,
registration: Arc::clone(&self.registration),
}
}
/// Returns a new empty [`MemoryReservation`] with the same [`MemoryConsumer`]
pub fn new_empty(&self) -> Self {
Self {
size: 0,
registration: Arc::clone(&self.registration),
}
}
/// Splits off all the bytes from this [`MemoryReservation`] into
/// a new [`MemoryReservation`] with the same [`MemoryConsumer`]
pub fn take(&mut self) -> MemoryReservation {
self.split(self.size)
}
}
impl Drop for MemoryReservation {
fn drop(&mut self) {
self.free();
}
}
const TB: u64 = 1 << 40;
const GB: u64 = 1 << 30;
const MB: u64 = 1 << 20;
const KB: u64 = 1 << 10;
/// Present size in human readable form
pub fn human_readable_size(size: usize) -> String {
let size = size as u64;
let (value, unit) = {
if size >= 2 * TB {
(size as f64 / TB as f64, "TB")
} else if size >= 2 * GB {
(size as f64 / GB as f64, "GB")
} else if size >= 2 * MB {
(size as f64 / MB as f64, "MB")
} else if size >= 2 * KB {
(size as f64 / KB as f64, "KB")
} else {
(size as f64, "B")
}
};
format!("{value:.1} {unit}")
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_memory_pool_underflow() {
let pool = Arc::new(GreedyMemoryPool::new(50)) as _;
let mut a1 = MemoryConsumer::new("a1").register(&pool);
assert_eq!(pool.reserved(), 0);
a1.grow(100);
assert_eq!(pool.reserved(), 100);
assert_eq!(a1.free(), 100);
assert_eq!(pool.reserved(), 0);
a1.try_grow(100).unwrap_err();
assert_eq!(pool.reserved(), 0);
a1.try_grow(30).unwrap();
assert_eq!(pool.reserved(), 30);
let mut a2 = MemoryConsumer::new("a2").register(&pool);
a2.try_grow(25).unwrap_err();
assert_eq!(pool.reserved(), 30);
drop(a1);
assert_eq!(pool.reserved(), 0);
a2.try_grow(25).unwrap();
assert_eq!(pool.reserved(), 25);
}
#[test]
fn test_split() {
let pool = Arc::new(GreedyMemoryPool::new(50)) as _;
let mut r1 = MemoryConsumer::new("r1").register(&pool);
r1.try_grow(20).unwrap();
assert_eq!(r1.size(), 20);
assert_eq!(pool.reserved(), 20);
// take 5 from r1, should still have same reservation split
let r2 = r1.split(5);
assert_eq!(r1.size(), 15);
assert_eq!(r2.size(), 5);
assert_eq!(pool.reserved(), 20);
// dropping r1 frees 15 but retains 5 as they have the same consumer
drop(r1);
assert_eq!(r2.size(), 5);
assert_eq!(pool.reserved(), 5);
}
#[test]
fn test_new_empty() {
let pool = Arc::new(GreedyMemoryPool::new(50)) as _;
let mut r1 = MemoryConsumer::new("r1").register(&pool);
r1.try_grow(20).unwrap();
let mut r2 = r1.new_empty();
r2.try_grow(5).unwrap();
assert_eq!(r1.size(), 20);
assert_eq!(r2.size(), 5);
assert_eq!(pool.reserved(), 25);
}
#[test]
fn test_take() {
let pool = Arc::new(GreedyMemoryPool::new(50)) as _;
let mut r1 = MemoryConsumer::new("r1").register(&pool);
r1.try_grow(20).unwrap();
let mut r2 = r1.take();
r2.try_grow(5).unwrap();
assert_eq!(r1.size(), 0);
assert_eq!(r2.size(), 25);
assert_eq!(pool.reserved(), 25);
// r1 can still grow again
r1.try_grow(3).unwrap();
assert_eq!(r1.size(), 3);
assert_eq!(r2.size(), 25);
assert_eq!(pool.reserved(), 28);
}
}