datafusion_execution/memory_pool/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! [`MemoryPool`] for memory management during query execution, [`proxy]` for
//! help with allocation accounting.

use datafusion_common::{internal_err, Result};
use std::{cmp::Ordering, sync::Arc};

mod pool;
pub mod proxy {
    pub use datafusion_common::utils::proxy::{RawTableAllocExt, VecAllocExt};
}

pub use pool::*;

/// Tracks and potentially limits memory use across operators during execution.
///
/// # Memory Management Overview
///
/// DataFusion is a streaming query engine, processing most queries without
/// buffering the entire input. Most operators require a fixed amount of memory
/// based on the schema and target batch size. However, certain operations such
/// as sorting and grouping/joining, require buffering intermediate results,
/// which can require memory proportional to the number of input rows.
///
/// Rather than tracking all allocations, DataFusion takes a pragmatic approach:
/// Intermediate memory used as data streams through the system is not accounted
/// (it assumed to be "small") but the large consumers of memory must register
/// and constrain their use. This design trades off the additional code
/// complexity of memory tracking with limiting resource usage.
///
/// When limiting memory with a `MemoryPool` you should typically reserve some
/// overhead (e.g. 10%) for the "small" memory allocations that are not tracked.
///
/// # Memory Management Design
///
/// As explained above, DataFusion's design ONLY limits operators that require
/// "large" amounts of memory (proportional to number of input rows), such as
/// `GroupByHashExec`. It does NOT track and limit memory used internally by
/// other operators such as `ParquetExec` or the `RecordBatch`es that flow
/// between operators.
///
/// In order to avoid allocating memory until the OS or the container system
/// kills the process, DataFusion `ExecutionPlan`s (operators) that consume
/// large amounts of memory must first request their desired allocation from a
/// [`MemoryPool`] before allocating more.  The request is typically managed via
/// a  [`MemoryReservation`] and [`MemoryConsumer`].
///
/// If the allocation is successful, the operator should proceed and allocate
/// the desired memory. If the allocation fails, the operator must either first
/// free memory (e.g. by spilling to local disk) and try again, or error.
///
/// Note that a `MemoryPool` can be shared by concurrently executing plans,
/// which can be used to control memory usage in a multi-tenant system.
///
/// # How MemoryPool works by example
///
/// Scenario 1:
/// For `Filter` operator, `RecordBatch`es will stream through it, so it
/// don't have to keep track of memory usage through [`MemoryPool`].
///
/// Scenario 2:
/// For `CrossJoin` operator, if the input size gets larger, the intermediate
/// state will also grow. So `CrossJoin` operator will use [`MemoryPool`] to
/// limit the memory usage.
/// 2.1 `CrossJoin` operator has read a new batch, asked memory pool for
/// additional memory. Memory pool updates the usage and returns success.
/// 2.2 `CrossJoin` has read another batch, and tries to reserve more memory
/// again, memory pool does not have enough memory. Since `CrossJoin` operator
/// has not implemented spilling, it will stop execution and return an error.
///
/// Scenario 3:
/// For `Aggregate` operator, its intermediate states will also accumulate as
/// the input size gets larger, but with spilling capability. When it tries to
/// reserve more memory from the memory pool, and the memory pool has already
/// reached the memory limit, it will return an error. Then, `Aggregate`
/// operator will spill the intermediate buffers to disk, and release memory
/// from the memory pool, and continue to retry memory reservation.
///
/// # Implementing `MemoryPool`
///
/// You can implement a custom allocation policy by implementing the
/// [`MemoryPool`] trait and configuring a `SessionContext` appropriately.
/// However, DataFusion comes with the following simple memory pool implementations that
/// handle many common cases:
///
/// * [`UnboundedMemoryPool`]: no memory limits (the default)
///
/// * [`GreedyMemoryPool`]: Limits memory usage to a fixed size using a "first
///   come first served" policy
///
/// * [`FairSpillPool`]: Limits memory usage to a fixed size, allocating memory
///   to all spilling operators fairly
pub trait MemoryPool: Send + Sync + std::fmt::Debug {
    /// Registers a new [`MemoryConsumer`]
    ///
    /// Note: Subsequent calls to [`Self::grow`] must be made to reserve memory
    fn register(&self, _consumer: &MemoryConsumer) {}

    /// Records the destruction of a [`MemoryReservation`] with [`MemoryConsumer`]
    ///
    /// Note: Prior calls to [`Self::shrink`] must be made to free any reserved memory
    fn unregister(&self, _consumer: &MemoryConsumer) {}

    /// Infallibly grow the provided `reservation` by `additional` bytes
    ///
    /// This must always succeed
    fn grow(&self, reservation: &MemoryReservation, additional: usize);

    /// Infallibly shrink the provided `reservation` by `shrink` bytes
    fn shrink(&self, reservation: &MemoryReservation, shrink: usize);

    /// Attempt to grow the provided `reservation` by `additional` bytes
    ///
    /// On error the `allocation` will not be increased in size
    fn try_grow(&self, reservation: &MemoryReservation, additional: usize) -> Result<()>;

    /// Return the total amount of memory reserved
    fn reserved(&self) -> usize;
}

/// A memory consumer is a named allocation traced by a particular
/// [`MemoryReservation`] in a [`MemoryPool`]. All allocations are registered to
/// a particular `MemoryConsumer`;
///
/// For help with allocation accounting, see the [proxy] module.
///
/// [proxy]: crate::memory_pool::proxy
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
pub struct MemoryConsumer {
    name: String,
    can_spill: bool,
}

impl MemoryConsumer {
    /// Create a new empty [`MemoryConsumer`] that can be grown using [`MemoryReservation`]
    pub fn new(name: impl Into<String>) -> Self {
        Self {
            name: name.into(),
            can_spill: false,
        }
    }

    /// Set whether this allocation can be spilled to disk
    pub fn with_can_spill(self, can_spill: bool) -> Self {
        Self { can_spill, ..self }
    }

    /// Returns true if this allocation can spill to disk
    pub fn can_spill(&self) -> bool {
        self.can_spill
    }

    /// Returns the name associated with this allocation
    pub fn name(&self) -> &str {
        &self.name
    }

    /// Registers this [`MemoryConsumer`] with the provided [`MemoryPool`] returning
    /// a [`MemoryReservation`] that can be used to grow or shrink the memory reservation
    pub fn register(self, pool: &Arc<dyn MemoryPool>) -> MemoryReservation {
        pool.register(&self);
        MemoryReservation {
            registration: Arc::new(SharedRegistration {
                pool: Arc::clone(pool),
                consumer: self,
            }),
            size: 0,
        }
    }
}

/// A registration of a [`MemoryConsumer`] with a [`MemoryPool`].
///
/// Calls [`MemoryPool::unregister`] on drop to return any memory to
/// the underlying pool.
#[derive(Debug)]
struct SharedRegistration {
    pool: Arc<dyn MemoryPool>,
    consumer: MemoryConsumer,
}

impl Drop for SharedRegistration {
    fn drop(&mut self) {
        self.pool.unregister(&self.consumer);
    }
}

/// A [`MemoryReservation`] tracks an individual reservation of a
/// number of bytes of memory in a [`MemoryPool`] that is freed back
/// to the pool on drop.
///
/// The reservation can be grown or shrunk over time.
#[derive(Debug)]
pub struct MemoryReservation {
    registration: Arc<SharedRegistration>,
    size: usize,
}

impl MemoryReservation {
    /// Returns the size of this reservation in bytes
    pub fn size(&self) -> usize {
        self.size
    }

    /// Returns [MemoryConsumer] for this [MemoryReservation]
    pub fn consumer(&self) -> &MemoryConsumer {
        &self.registration.consumer
    }

    /// Frees all bytes from this reservation back to the underlying
    /// pool, returning the number of bytes freed.
    pub fn free(&mut self) -> usize {
        let size = self.size;
        if size != 0 {
            self.shrink(size)
        }
        size
    }

    /// Frees `capacity` bytes from this reservation
    ///
    /// # Panics
    ///
    /// Panics if `capacity` exceeds [`Self::size`]
    pub fn shrink(&mut self, capacity: usize) {
        let new_size = self.size.checked_sub(capacity).unwrap();
        self.registration.pool.shrink(self, capacity);
        self.size = new_size
    }

    /// Tries to free `capacity` bytes from this reservation
    /// if `capacity` does not exceed [`Self::size`]
    /// Returns new reservation size
    /// or error if shrinking capacity is more than allocated size
    pub fn try_shrink(&mut self, capacity: usize) -> Result<usize> {
        if let Some(new_size) = self.size.checked_sub(capacity) {
            self.registration.pool.shrink(self, capacity);
            self.size = new_size;
            Ok(new_size)
        } else {
            internal_err!(
                "Cannot free the capacity {capacity} out of allocated size {}",
                self.size
            )
        }
    }

    /// Sets the size of this reservation to `capacity`
    pub fn resize(&mut self, capacity: usize) {
        match capacity.cmp(&self.size) {
            Ordering::Greater => self.grow(capacity - self.size),
            Ordering::Less => self.shrink(self.size - capacity),
            _ => {}
        }
    }

    /// Try to set the size of this reservation to `capacity`
    pub fn try_resize(&mut self, capacity: usize) -> Result<()> {
        match capacity.cmp(&self.size) {
            Ordering::Greater => self.try_grow(capacity - self.size)?,
            Ordering::Less => self.shrink(self.size - capacity),
            _ => {}
        };
        Ok(())
    }

    /// Increase the size of this reservation by `capacity` bytes
    pub fn grow(&mut self, capacity: usize) {
        self.registration.pool.grow(self, capacity);
        self.size += capacity;
    }

    /// Try to increase the size of this reservation by `capacity`
    /// bytes, returning error if there is insufficient capacity left
    /// in the pool.
    pub fn try_grow(&mut self, capacity: usize) -> Result<()> {
        self.registration.pool.try_grow(self, capacity)?;
        self.size += capacity;
        Ok(())
    }

    /// Splits off `capacity` bytes from this [`MemoryReservation`]
    /// into a new [`MemoryReservation`] with the same
    /// [`MemoryConsumer`].
    ///
    /// This can be useful to free part of this reservation with RAAI
    /// style dropping
    ///
    /// # Panics
    ///
    /// Panics if `capacity` exceeds [`Self::size`]
    pub fn split(&mut self, capacity: usize) -> MemoryReservation {
        self.size = self.size.checked_sub(capacity).unwrap();
        Self {
            size: capacity,
            registration: Arc::clone(&self.registration),
        }
    }

    /// Returns a new empty [`MemoryReservation`] with the same [`MemoryConsumer`]
    pub fn new_empty(&self) -> Self {
        Self {
            size: 0,
            registration: Arc::clone(&self.registration),
        }
    }

    /// Splits off all the bytes from this [`MemoryReservation`] into
    /// a new [`MemoryReservation`] with the same [`MemoryConsumer`]
    pub fn take(&mut self) -> MemoryReservation {
        self.split(self.size)
    }
}

impl Drop for MemoryReservation {
    fn drop(&mut self) {
        self.free();
    }
}

pub mod units {
    pub const TB: u64 = 1 << 40;
    pub const GB: u64 = 1 << 30;
    pub const MB: u64 = 1 << 20;
    pub const KB: u64 = 1 << 10;
}

/// Present size in human readable form
pub fn human_readable_size(size: usize) -> String {
    use units::*;

    let size = size as u64;
    let (value, unit) = {
        if size >= 2 * TB {
            (size as f64 / TB as f64, "TB")
        } else if size >= 2 * GB {
            (size as f64 / GB as f64, "GB")
        } else if size >= 2 * MB {
            (size as f64 / MB as f64, "MB")
        } else if size >= 2 * KB {
            (size as f64 / KB as f64, "KB")
        } else {
            (size as f64, "B")
        }
    };
    format!("{value:.1} {unit}")
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_memory_pool_underflow() {
        let pool = Arc::new(GreedyMemoryPool::new(50)) as _;
        let mut a1 = MemoryConsumer::new("a1").register(&pool);
        assert_eq!(pool.reserved(), 0);

        a1.grow(100);
        assert_eq!(pool.reserved(), 100);

        assert_eq!(a1.free(), 100);
        assert_eq!(pool.reserved(), 0);

        a1.try_grow(100).unwrap_err();
        assert_eq!(pool.reserved(), 0);

        a1.try_grow(30).unwrap();
        assert_eq!(pool.reserved(), 30);

        let mut a2 = MemoryConsumer::new("a2").register(&pool);
        a2.try_grow(25).unwrap_err();
        assert_eq!(pool.reserved(), 30);

        drop(a1);
        assert_eq!(pool.reserved(), 0);

        a2.try_grow(25).unwrap();
        assert_eq!(pool.reserved(), 25);
    }

    #[test]
    fn test_split() {
        let pool = Arc::new(GreedyMemoryPool::new(50)) as _;
        let mut r1 = MemoryConsumer::new("r1").register(&pool);

        r1.try_grow(20).unwrap();
        assert_eq!(r1.size(), 20);
        assert_eq!(pool.reserved(), 20);

        // take 5 from r1, should still have same reservation split
        let r2 = r1.split(5);
        assert_eq!(r1.size(), 15);
        assert_eq!(r2.size(), 5);
        assert_eq!(pool.reserved(), 20);

        // dropping r1 frees 15 but retains 5 as they have the same consumer
        drop(r1);
        assert_eq!(r2.size(), 5);
        assert_eq!(pool.reserved(), 5);
    }

    #[test]
    fn test_new_empty() {
        let pool = Arc::new(GreedyMemoryPool::new(50)) as _;
        let mut r1 = MemoryConsumer::new("r1").register(&pool);

        r1.try_grow(20).unwrap();
        let mut r2 = r1.new_empty();
        r2.try_grow(5).unwrap();

        assert_eq!(r1.size(), 20);
        assert_eq!(r2.size(), 5);
        assert_eq!(pool.reserved(), 25);
    }

    #[test]
    fn test_take() {
        let pool = Arc::new(GreedyMemoryPool::new(50)) as _;
        let mut r1 = MemoryConsumer::new("r1").register(&pool);

        r1.try_grow(20).unwrap();
        let mut r2 = r1.take();
        r2.try_grow(5).unwrap();

        assert_eq!(r1.size(), 0);
        assert_eq!(r2.size(), 25);
        assert_eq!(pool.reserved(), 25);

        // r1 can still grow again
        r1.try_grow(3).unwrap();
        assert_eq!(r1.size(), 3);
        assert_eq!(r2.size(), 25);
        assert_eq!(pool.reserved(), 28);
    }
}