datafusion_expr_common/
columnar_value.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! [`ColumnarValue`] represents the result of evaluating an expression.

use arrow::array::{Array, ArrayRef, NullArray};
use arrow::compute::{kernels, CastOptions};
use arrow::datatypes::DataType;
use datafusion_common::format::DEFAULT_CAST_OPTIONS;
use datafusion_common::{internal_err, Result, ScalarValue};
use std::sync::Arc;

/// The result of evaluating an expression.
///
/// [`ColumnarValue::Scalar`] represents a single value repeated any number of
/// times. This is an important performance optimization for handling values
/// that do not change across rows.
///
/// [`ColumnarValue::Array`] represents a column of data, stored as an  Arrow
/// [`ArrayRef`]
///
/// A slice of `ColumnarValue`s logically represents a table, with each column
/// having the same number of rows. This means that all `Array`s are the same
/// length.
///
/// # Example
///
/// A `ColumnarValue::Array` with an array of 5 elements and a
/// `ColumnarValue::Scalar` with the value 100
///
/// ```text
/// ┌──────────────┐
/// │ ┌──────────┐ │
/// │ │   "A"    │ │
/// │ ├──────────┤ │
/// │ │   "B"    │ │
/// │ ├──────────┤ │
/// │ │   "C"    │ │
/// │ ├──────────┤ │
/// │ │   "D"    │ │        ┌──────────────┐
/// │ ├──────────┤ │        │ ┌──────────┐ │
/// │ │   "E"    │ │        │ │   100    │ │
/// │ └──────────┘ │        │ └──────────┘ │
/// └──────────────┘        └──────────────┘
///
///  ColumnarValue::        ColumnarValue::
///       Array                 Scalar
/// ```
///
/// Logically represents the following table:
///
/// | Column 1| Column 2 |
/// | ------- | -------- |
/// | A | 100 |
/// | B | 100 |
/// | C | 100 |
/// | D | 100 |
/// | E | 100 |
///
/// # Performance Notes
///
/// When implementing functions or operators, it is important to consider the
/// performance implications of handling scalar values.
///
/// Because all functions must handle [`ArrayRef`], it is
/// convenient to convert [`ColumnarValue::Scalar`]s using
/// [`Self::into_array`]. For example,  [`ColumnarValue::values_to_arrays`]
/// converts multiple columnar values into arrays of the same length.
///
/// However, it is often much more performant to provide a different,
/// implementation that handles scalar values differently
#[derive(Clone, Debug)]
pub enum ColumnarValue {
    /// Array of values
    Array(ArrayRef),
    /// A single value
    Scalar(ScalarValue),
}

impl From<ArrayRef> for ColumnarValue {
    fn from(value: ArrayRef) -> Self {
        ColumnarValue::Array(value)
    }
}

impl From<ScalarValue> for ColumnarValue {
    fn from(value: ScalarValue) -> Self {
        ColumnarValue::Scalar(value)
    }
}

impl ColumnarValue {
    pub fn data_type(&self) -> DataType {
        match self {
            ColumnarValue::Array(array_value) => array_value.data_type().clone(),
            ColumnarValue::Scalar(scalar_value) => scalar_value.data_type(),
        }
    }

    /// Convert a columnar value into an Arrow [`ArrayRef`] with the specified
    /// number of rows. [`Self::Scalar`] is converted by repeating the same
    /// scalar multiple times which is not as efficient as handling the scalar
    /// directly.
    ///
    /// See [`Self::values_to_arrays`] to convert multiple columnar values into
    /// arrays of the same length.
    ///
    /// # Errors
    ///
    /// Errors if `self` is a Scalar that fails to be converted into an array of size
    pub fn into_array(self, num_rows: usize) -> Result<ArrayRef> {
        Ok(match self {
            ColumnarValue::Array(array) => array,
            ColumnarValue::Scalar(scalar) => scalar.to_array_of_size(num_rows)?,
        })
    }

    /// Null columnar values are implemented as a null array in order to pass batch
    /// num_rows
    pub fn create_null_array(num_rows: usize) -> Self {
        ColumnarValue::Array(Arc::new(NullArray::new(num_rows)))
    }

    /// Converts  [`ColumnarValue`]s to [`ArrayRef`]s with the same length.
    ///
    /// # Performance Note
    ///
    /// This function expands any [`ScalarValue`] to an array. This expansion
    /// permits using a single function in terms of arrays, but it can be
    /// inefficient compared to handling the scalar value directly.
    ///
    /// Thus, it is recommended to provide specialized implementations for
    /// scalar values if performance is a concern.
    ///
    /// # Errors
    ///
    /// If there are multiple array arguments that have different lengths
    pub fn values_to_arrays(args: &[ColumnarValue]) -> Result<Vec<ArrayRef>> {
        if args.is_empty() {
            return Ok(vec![]);
        }

        let mut array_len = None;
        for arg in args {
            array_len = match (arg, array_len) {
                (ColumnarValue::Array(a), None) => Some(a.len()),
                (ColumnarValue::Array(a), Some(array_len)) => {
                    if array_len == a.len() {
                        Some(array_len)
                    } else {
                        return internal_err!(
                            "Arguments has mixed length. Expected length: {array_len}, found length: {}", a.len()
                        );
                    }
                }
                (ColumnarValue::Scalar(_), array_len) => array_len,
            }
        }

        // If array_len is none, it means there are only scalars, so make a 1 element array
        let inferred_length = array_len.unwrap_or(1);

        let args = args
            .iter()
            .map(|arg| arg.clone().into_array(inferred_length))
            .collect::<Result<Vec<_>>>()?;

        Ok(args)
    }

    /// Cast's this [ColumnarValue] to the specified `DataType`
    pub fn cast_to(
        &self,
        cast_type: &DataType,
        cast_options: Option<&CastOptions<'static>>,
    ) -> Result<ColumnarValue> {
        let cast_options = cast_options.cloned().unwrap_or(DEFAULT_CAST_OPTIONS);
        match self {
            ColumnarValue::Array(array) => Ok(ColumnarValue::Array(
                kernels::cast::cast_with_options(array, cast_type, &cast_options)?,
            )),
            ColumnarValue::Scalar(scalar) => Ok(ColumnarValue::Scalar(
                scalar.cast_to_with_options(cast_type, &cast_options)?,
            )),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn values_to_arrays() {
        // (input, expected)
        let cases = vec![
            // empty
            TestCase {
                input: vec![],
                expected: vec![],
            },
            // one array of length 3
            TestCase {
                input: vec![ColumnarValue::Array(make_array(1, 3))],
                expected: vec![make_array(1, 3)],
            },
            // two arrays length 3
            TestCase {
                input: vec![
                    ColumnarValue::Array(make_array(1, 3)),
                    ColumnarValue::Array(make_array(2, 3)),
                ],
                expected: vec![make_array(1, 3), make_array(2, 3)],
            },
            // array and scalar
            TestCase {
                input: vec![
                    ColumnarValue::Array(make_array(1, 3)),
                    ColumnarValue::Scalar(ScalarValue::Int32(Some(100))),
                ],
                expected: vec![
                    make_array(1, 3),
                    make_array(100, 3), // scalar is expanded
                ],
            },
            // scalar and array
            TestCase {
                input: vec![
                    ColumnarValue::Scalar(ScalarValue::Int32(Some(100))),
                    ColumnarValue::Array(make_array(1, 3)),
                ],
                expected: vec![
                    make_array(100, 3), // scalar is expanded
                    make_array(1, 3),
                ],
            },
            // multiple scalars and array
            TestCase {
                input: vec![
                    ColumnarValue::Scalar(ScalarValue::Int32(Some(100))),
                    ColumnarValue::Array(make_array(1, 3)),
                    ColumnarValue::Scalar(ScalarValue::Int32(Some(200))),
                ],
                expected: vec![
                    make_array(100, 3), // scalar is expanded
                    make_array(1, 3),
                    make_array(200, 3), // scalar is expanded
                ],
            },
        ];
        for case in cases {
            case.run();
        }
    }

    #[test]
    #[should_panic(
        expected = "Arguments has mixed length. Expected length: 3, found length: 4"
    )]
    fn values_to_arrays_mixed_length() {
        ColumnarValue::values_to_arrays(&[
            ColumnarValue::Array(make_array(1, 3)),
            ColumnarValue::Array(make_array(2, 4)),
        ])
        .unwrap();
    }

    #[test]
    #[should_panic(
        expected = "Arguments has mixed length. Expected length: 3, found length: 7"
    )]
    fn values_to_arrays_mixed_length_and_scalar() {
        ColumnarValue::values_to_arrays(&[
            ColumnarValue::Array(make_array(1, 3)),
            ColumnarValue::Scalar(ScalarValue::Int32(Some(100))),
            ColumnarValue::Array(make_array(2, 7)),
        ])
        .unwrap();
    }

    struct TestCase {
        input: Vec<ColumnarValue>,
        expected: Vec<ArrayRef>,
    }

    impl TestCase {
        fn run(self) {
            let Self { input, expected } = self;

            assert_eq!(
                ColumnarValue::values_to_arrays(&input).unwrap(),
                expected,
                "\ninput: {input:?}\nexpected: {expected:?}"
            );
        }
    }

    /// Makes an array of length `len` with all elements set to `val`
    fn make_array(val: i32, len: usize) -> ArrayRef {
        Arc::new(arrow::array::Int32Array::from(vec![val; len]))
    }
}