1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Expr module contains core type definition for `Expr`.
use crate::aggregate_function;
use crate::built_in_function;
use crate::expr_fn::binary_expr;
use crate::logical_plan::Subquery;
use crate::udaf;
use crate::utils::{expr_to_columns, find_out_reference_exprs};
use crate::window_frame;
use crate::window_function;
use crate::Operator;
use arrow::datatypes::DataType;
use datafusion_common::internal_err;
use datafusion_common::{plan_err, Column, DataFusionError, Result, ScalarValue};
use std::collections::HashSet;
use std::fmt;
use std::fmt::{Display, Formatter, Write};
use std::hash::{BuildHasher, Hash, Hasher};
use std::sync::Arc;
/// `Expr` is a central struct of DataFusion's query API, and
/// represent logical expressions such as `A + 1`, or `CAST(c1 AS
/// int)`.
///
/// An `Expr` can compute its [DataType](arrow::datatypes::DataType)
/// and nullability, and has functions for building up complex
/// expressions.
///
/// # Examples
///
/// ## Create an expression `c1` referring to column named "c1"
/// ```
/// # use datafusion_common::Column;
/// # use datafusion_expr::{lit, col, Expr};
/// let expr = col("c1");
/// assert_eq!(expr, Expr::Column(Column::from_name("c1")));
/// ```
///
/// ## Create the expression `c1 + c2` to add columns "c1" and "c2" together
/// ```
/// # use datafusion_expr::{lit, col, Operator, Expr};
/// let expr = col("c1") + col("c2");
///
/// assert!(matches!(expr, Expr::BinaryExpr { ..} ));
/// if let Expr::BinaryExpr(binary_expr) = expr {
/// assert_eq!(*binary_expr.left, col("c1"));
/// assert_eq!(*binary_expr.right, col("c2"));
/// assert_eq!(binary_expr.op, Operator::Plus);
/// }
/// ```
///
/// ## Create expression `c1 = 42` to compare the value in column "c1" to the literal value `42`
/// ```
/// # use datafusion_common::ScalarValue;
/// # use datafusion_expr::{lit, col, Operator, Expr};
/// let expr = col("c1").eq(lit(42_i32));
///
/// assert!(matches!(expr, Expr::BinaryExpr { .. } ));
/// if let Expr::BinaryExpr(binary_expr) = expr {
/// assert_eq!(*binary_expr.left, col("c1"));
/// let scalar = ScalarValue::Int32(Some(42));
/// assert_eq!(*binary_expr.right, Expr::Literal(scalar));
/// assert_eq!(binary_expr.op, Operator::Eq);
/// }
/// ```
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub enum Expr {
/// An expression with a specific name.
Alias(Alias),
/// A named reference to a qualified filed in a schema.
Column(Column),
/// A named reference to a variable in a registry.
ScalarVariable(DataType, Vec<String>),
/// A constant value.
Literal(ScalarValue),
/// A binary expression such as "age > 21"
BinaryExpr(BinaryExpr),
/// LIKE expression
Like(Like),
/// LIKE expression that uses regular expressions
SimilarTo(Like),
/// Negation of an expression. The expression's type must be a boolean to make sense.
Not(Box<Expr>),
/// Whether an expression is not Null. This expression is never null.
IsNotNull(Box<Expr>),
/// Whether an expression is Null. This expression is never null.
IsNull(Box<Expr>),
/// Whether an expression is True. Boolean operation
IsTrue(Box<Expr>),
/// Whether an expression is False. Boolean operation
IsFalse(Box<Expr>),
/// Whether an expression is Unknown. Boolean operation
IsUnknown(Box<Expr>),
/// Whether an expression is not True. Boolean operation
IsNotTrue(Box<Expr>),
/// Whether an expression is not False. Boolean operation
IsNotFalse(Box<Expr>),
/// Whether an expression is not Unknown. Boolean operation
IsNotUnknown(Box<Expr>),
/// arithmetic negation of an expression, the operand must be of a signed numeric data type
Negative(Box<Expr>),
/// Returns the field of a [`arrow::array::ListArray`] or
/// [`arrow::array::StructArray`] by index or range
GetIndexedField(GetIndexedField),
/// Whether an expression is between a given range.
Between(Between),
/// The CASE expression is similar to a series of nested if/else and there are two forms that
/// can be used. The first form consists of a series of boolean "when" expressions with
/// corresponding "then" expressions, and an optional "else" expression.
///
/// CASE WHEN condition THEN result
/// [WHEN ...]
/// [ELSE result]
/// END
///
/// The second form uses a base expression and then a series of "when" clauses that match on a
/// literal value.
///
/// CASE expression
/// WHEN value THEN result
/// [WHEN ...]
/// [ELSE result]
/// END
Case(Case),
/// Casts the expression to a given type and will return a runtime error if the expression cannot be cast.
/// This expression is guaranteed to have a fixed type.
Cast(Cast),
/// Casts the expression to a given type and will return a null value if the expression cannot be cast.
/// This expression is guaranteed to have a fixed type.
TryCast(TryCast),
/// A sort expression, that can be used to sort values.
Sort(Sort),
/// Represents the call of a built-in scalar function with a set of arguments.
ScalarFunction(ScalarFunction),
/// Represents the call of a user-defined scalar function with arguments.
ScalarUDF(ScalarUDF),
/// Represents the call of an aggregate built-in function with arguments.
AggregateFunction(AggregateFunction),
/// Represents the call of a window function with arguments.
WindowFunction(WindowFunction),
/// aggregate function
AggregateUDF(AggregateUDF),
/// Returns whether the list contains the expr value.
InList(InList),
/// EXISTS subquery
Exists(Exists),
/// IN subquery
InSubquery(InSubquery),
/// Scalar subquery
ScalarSubquery(Subquery),
/// Represents a reference to all fields in a schema.
Wildcard,
/// Represents a reference to all fields in a specific schema.
QualifiedWildcard { qualifier: String },
/// List of grouping set expressions. Only valid in the context of an aggregate
/// GROUP BY expression list
GroupingSet(GroupingSet),
/// A place holder for parameters in a prepared statement
/// (e.g. `$foo` or `$1`)
Placeholder(Placeholder),
/// A place holder which hold a reference to a qualified field
/// in the outer query, used for correlated sub queries.
OuterReferenceColumn(DataType, Column),
}
/// Alias expression
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct Alias {
pub expr: Box<Expr>,
pub name: String,
}
impl Alias {
pub fn new(expr: Expr, name: impl Into<String>) -> Self {
Self {
expr: Box::new(expr),
name: name.into(),
}
}
}
/// Binary expression
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct BinaryExpr {
/// Left-hand side of the expression
pub left: Box<Expr>,
/// The comparison operator
pub op: Operator,
/// Right-hand side of the expression
pub right: Box<Expr>,
}
impl BinaryExpr {
/// Create a new binary expression
pub fn new(left: Box<Expr>, op: Operator, right: Box<Expr>) -> Self {
Self { left, op, right }
}
}
impl Display for BinaryExpr {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
// Put parentheses around child binary expressions so that we can see the difference
// between `(a OR b) AND c` and `a OR (b AND c)`. We only insert parentheses when needed,
// based on operator precedence. For example, `(a AND b) OR c` and `a AND b OR c` are
// equivalent and the parentheses are not necessary.
fn write_child(
f: &mut Formatter<'_>,
expr: &Expr,
precedence: u8,
) -> fmt::Result {
match expr {
Expr::BinaryExpr(child) => {
let p = child.op.precedence();
if p == 0 || p < precedence {
write!(f, "({child})")?;
} else {
write!(f, "{child}")?;
}
}
_ => write!(f, "{expr}")?,
}
Ok(())
}
let precedence = self.op.precedence();
write_child(f, self.left.as_ref(), precedence)?;
write!(f, " {} ", self.op)?;
write_child(f, self.right.as_ref(), precedence)
}
}
/// CASE expression
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct Case {
/// Optional base expression that can be compared to literal values in the "when" expressions
pub expr: Option<Box<Expr>>,
/// One or more when/then expressions
pub when_then_expr: Vec<(Box<Expr>, Box<Expr>)>,
/// Optional "else" expression
pub else_expr: Option<Box<Expr>>,
}
impl Case {
/// Create a new Case expression
pub fn new(
expr: Option<Box<Expr>>,
when_then_expr: Vec<(Box<Expr>, Box<Expr>)>,
else_expr: Option<Box<Expr>>,
) -> Self {
Self {
expr,
when_then_expr,
else_expr,
}
}
}
/// LIKE expression
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct Like {
pub negated: bool,
pub expr: Box<Expr>,
pub pattern: Box<Expr>,
pub escape_char: Option<char>,
/// Whether to ignore case on comparing
pub case_insensitive: bool,
}
impl Like {
/// Create a new Like expression
pub fn new(
negated: bool,
expr: Box<Expr>,
pattern: Box<Expr>,
escape_char: Option<char>,
case_insensitive: bool,
) -> Self {
Self {
negated,
expr,
pattern,
escape_char,
case_insensitive,
}
}
}
/// BETWEEN expression
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct Between {
/// The value to compare
pub expr: Box<Expr>,
/// Whether the expression is negated
pub negated: bool,
/// The low end of the range
pub low: Box<Expr>,
/// The high end of the range
pub high: Box<Expr>,
}
impl Between {
/// Create a new Between expression
pub fn new(expr: Box<Expr>, negated: bool, low: Box<Expr>, high: Box<Expr>) -> Self {
Self {
expr,
negated,
low,
high,
}
}
}
/// ScalarFunction expression
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct ScalarFunction {
/// The function
pub fun: built_in_function::BuiltinScalarFunction,
/// List of expressions to feed to the functions as arguments
pub args: Vec<Expr>,
}
impl ScalarFunction {
/// Create a new ScalarFunction expression
pub fn new(fun: built_in_function::BuiltinScalarFunction, args: Vec<Expr>) -> Self {
Self { fun, args }
}
}
/// ScalarUDF expression
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct ScalarUDF {
/// The function
pub fun: Arc<crate::ScalarUDF>,
/// List of expressions to feed to the functions as arguments
pub args: Vec<Expr>,
}
impl ScalarUDF {
/// Create a new ScalarUDF expression
pub fn new(fun: Arc<crate::ScalarUDF>, args: Vec<Expr>) -> Self {
Self { fun, args }
}
}
/// Access a sub field of a nested type, such as `Field` or `List`
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub enum GetFieldAccess {
/// Named field, for example `struct["name"]`
NamedStructField { name: ScalarValue },
/// Single list index, for example: `list[i]`
ListIndex { key: Box<Expr> },
/// List range, for example `list[i:j]`
ListRange { start: Box<Expr>, stop: Box<Expr> },
}
/// Returns the field of a [`arrow::array::ListArray`] or
/// [`arrow::array::StructArray`] by `key`. See [`GetFieldAccess`] for
/// details.
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct GetIndexedField {
/// The expression to take the field from
pub expr: Box<Expr>,
/// The name of the field to take
pub field: GetFieldAccess,
}
impl GetIndexedField {
/// Create a new GetIndexedField expression
pub fn new(expr: Box<Expr>, field: GetFieldAccess) -> Self {
Self { expr, field }
}
}
/// Cast expression
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct Cast {
/// The expression being cast
pub expr: Box<Expr>,
/// The `DataType` the expression will yield
pub data_type: DataType,
}
impl Cast {
/// Create a new Cast expression
pub fn new(expr: Box<Expr>, data_type: DataType) -> Self {
Self { expr, data_type }
}
}
/// TryCast Expression
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct TryCast {
/// The expression being cast
pub expr: Box<Expr>,
/// The `DataType` the expression will yield
pub data_type: DataType,
}
impl TryCast {
/// Create a new TryCast expression
pub fn new(expr: Box<Expr>, data_type: DataType) -> Self {
Self { expr, data_type }
}
}
/// SORT expression
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct Sort {
/// The expression to sort on
pub expr: Box<Expr>,
/// The direction of the sort
pub asc: bool,
/// Whether to put Nulls before all other data values
pub nulls_first: bool,
}
impl Sort {
/// Create a new Sort expression
pub fn new(expr: Box<Expr>, asc: bool, nulls_first: bool) -> Self {
Self {
expr,
asc,
nulls_first,
}
}
}
/// Aggregate function
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct AggregateFunction {
/// Name of the function
pub fun: aggregate_function::AggregateFunction,
/// List of expressions to feed to the functions as arguments
pub args: Vec<Expr>,
/// Whether this is a DISTINCT aggregation or not
pub distinct: bool,
/// Optional filter
pub filter: Option<Box<Expr>>,
/// Optional ordering
pub order_by: Option<Vec<Expr>>,
}
impl AggregateFunction {
pub fn new(
fun: aggregate_function::AggregateFunction,
args: Vec<Expr>,
distinct: bool,
filter: Option<Box<Expr>>,
order_by: Option<Vec<Expr>>,
) -> Self {
Self {
fun,
args,
distinct,
filter,
order_by,
}
}
}
/// Window function
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct WindowFunction {
/// Name of the function
pub fun: window_function::WindowFunction,
/// List of expressions to feed to the functions as arguments
pub args: Vec<Expr>,
/// List of partition by expressions
pub partition_by: Vec<Expr>,
/// List of order by expressions
pub order_by: Vec<Expr>,
/// Window frame
pub window_frame: window_frame::WindowFrame,
}
impl WindowFunction {
/// Create a new Window expression
pub fn new(
fun: window_function::WindowFunction,
args: Vec<Expr>,
partition_by: Vec<Expr>,
order_by: Vec<Expr>,
window_frame: window_frame::WindowFrame,
) -> Self {
Self {
fun,
args,
partition_by,
order_by,
window_frame,
}
}
}
// Exists expression.
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct Exists {
/// subquery that will produce a single column of data
pub subquery: Subquery,
/// Whether the expression is negated
pub negated: bool,
}
impl Exists {
// Create a new Exists expression.
pub fn new(subquery: Subquery, negated: bool) -> Self {
Self { subquery, negated }
}
}
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct AggregateUDF {
/// The function
pub fun: Arc<udaf::AggregateUDF>,
/// List of expressions to feed to the functions as arguments
pub args: Vec<Expr>,
/// Optional filter
pub filter: Option<Box<Expr>>,
/// Optional ORDER BY applied prior to aggregating
pub order_by: Option<Vec<Expr>>,
}
impl AggregateUDF {
/// Create a new AggregateUDF expression
pub fn new(
fun: Arc<udaf::AggregateUDF>,
args: Vec<Expr>,
filter: Option<Box<Expr>>,
order_by: Option<Vec<Expr>>,
) -> Self {
Self {
fun,
args,
filter,
order_by,
}
}
}
/// InList expression
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct InList {
/// The expression to compare
pub expr: Box<Expr>,
/// The list of values to compare against
pub list: Vec<Expr>,
/// Whether the expression is negated
pub negated: bool,
}
impl InList {
/// Create a new InList expression
pub fn new(expr: Box<Expr>, list: Vec<Expr>, negated: bool) -> Self {
Self {
expr,
list,
negated,
}
}
}
/// IN subquery
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct InSubquery {
/// The expression to compare
pub expr: Box<Expr>,
/// Subquery that will produce a single column of data to compare against
pub subquery: Subquery,
/// Whether the expression is negated
pub negated: bool,
}
impl InSubquery {
/// Create a new InSubquery expression
pub fn new(expr: Box<Expr>, subquery: Subquery, negated: bool) -> Self {
Self {
expr,
subquery,
negated,
}
}
}
/// Placeholder
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct Placeholder {
/// The identifier of the parameter (e.g, $1 or $foo)
pub id: String,
/// The type the parameter will be filled in with
pub data_type: Option<DataType>,
}
impl Placeholder {
/// Create a new Placeholder expression
pub fn new(id: String, data_type: Option<DataType>) -> Self {
Self { id, data_type }
}
}
/// Grouping sets
/// See <https://www.postgresql.org/docs/current/queries-table-expressions.html#QUERIES-GROUPING-SETS>
/// for Postgres definition.
/// See <https://spark.apache.org/docs/latest/sql-ref-syntax-qry-select-groupby.html>
/// for Apache Spark definition.
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub enum GroupingSet {
/// Rollup grouping sets
Rollup(Vec<Expr>),
/// Cube grouping sets
Cube(Vec<Expr>),
/// User-defined grouping sets
GroupingSets(Vec<Vec<Expr>>),
}
impl GroupingSet {
/// Return all distinct exprs in the grouping set. For `CUBE` and `ROLLUP` this
/// is just the underlying list of exprs. For `GROUPING SET` we need to deduplicate
/// the exprs in the underlying sets.
pub fn distinct_expr(&self) -> Vec<Expr> {
match self {
GroupingSet::Rollup(exprs) => exprs.clone(),
GroupingSet::Cube(exprs) => exprs.clone(),
GroupingSet::GroupingSets(groups) => {
let mut exprs: Vec<Expr> = vec![];
for exp in groups.iter().flatten() {
if !exprs.contains(exp) {
exprs.push(exp.clone());
}
}
exprs
}
}
}
}
/// Fixed seed for the hashing so that Ords are consistent across runs
const SEED: ahash::RandomState = ahash::RandomState::with_seeds(0, 0, 0, 0);
impl PartialOrd for Expr {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
let mut hasher = SEED.build_hasher();
self.hash(&mut hasher);
let s = hasher.finish();
let mut hasher = SEED.build_hasher();
other.hash(&mut hasher);
let o = hasher.finish();
Some(s.cmp(&o))
}
}
impl Expr {
/// Returns the name of this expression as it should appear in a schema. This name
/// will not include any CAST expressions.
pub fn display_name(&self) -> Result<String> {
create_name(self)
}
/// Returns the name of this expression as it should appear in a schema. This name
/// will not include any CAST expressions.
#[deprecated(since = "14.0.0", note = "please use `display_name` instead")]
pub fn name(&self) -> Result<String> {
self.display_name()
}
/// Returns a full and complete string representation of this expression.
pub fn canonical_name(&self) -> String {
format!("{self}")
}
/// Return String representation of the variant represented by `self`
/// Useful for non-rust based bindings
pub fn variant_name(&self) -> &str {
match self {
Expr::AggregateFunction { .. } => "AggregateFunction",
Expr::AggregateUDF { .. } => "AggregateUDF",
Expr::Alias(..) => "Alias",
Expr::Between { .. } => "Between",
Expr::BinaryExpr { .. } => "BinaryExpr",
Expr::Case { .. } => "Case",
Expr::Cast { .. } => "Cast",
Expr::Column(..) => "Column",
Expr::OuterReferenceColumn(_, _) => "Outer",
Expr::Exists { .. } => "Exists",
Expr::GetIndexedField { .. } => "GetIndexedField",
Expr::GroupingSet(..) => "GroupingSet",
Expr::InList { .. } => "InList",
Expr::InSubquery(..) => "InSubquery",
Expr::IsNotNull(..) => "IsNotNull",
Expr::IsNull(..) => "IsNull",
Expr::Like { .. } => "Like",
Expr::SimilarTo { .. } => "RLike",
Expr::IsTrue(..) => "IsTrue",
Expr::IsFalse(..) => "IsFalse",
Expr::IsUnknown(..) => "IsUnknown",
Expr::IsNotTrue(..) => "IsNotTrue",
Expr::IsNotFalse(..) => "IsNotFalse",
Expr::IsNotUnknown(..) => "IsNotUnknown",
Expr::Literal(..) => "Literal",
Expr::Negative(..) => "Negative",
Expr::Not(..) => "Not",
Expr::Placeholder(_) => "Placeholder",
Expr::QualifiedWildcard { .. } => "QualifiedWildcard",
Expr::ScalarFunction(..) => "ScalarFunction",
Expr::ScalarSubquery { .. } => "ScalarSubquery",
Expr::ScalarUDF(..) => "ScalarUDF",
Expr::ScalarVariable(..) => "ScalarVariable",
Expr::Sort { .. } => "Sort",
Expr::TryCast { .. } => "TryCast",
Expr::WindowFunction { .. } => "WindowFunction",
Expr::Wildcard => "Wildcard",
}
}
/// Return `self == other`
pub fn eq(self, other: Expr) -> Expr {
binary_expr(self, Operator::Eq, other)
}
/// Return `self != other`
pub fn not_eq(self, other: Expr) -> Expr {
binary_expr(self, Operator::NotEq, other)
}
/// Return `self > other`
pub fn gt(self, other: Expr) -> Expr {
binary_expr(self, Operator::Gt, other)
}
/// Return `self >= other`
pub fn gt_eq(self, other: Expr) -> Expr {
binary_expr(self, Operator::GtEq, other)
}
/// Return `self < other`
pub fn lt(self, other: Expr) -> Expr {
binary_expr(self, Operator::Lt, other)
}
/// Return `self <= other`
pub fn lt_eq(self, other: Expr) -> Expr {
binary_expr(self, Operator::LtEq, other)
}
/// Return `self && other`
pub fn and(self, other: Expr) -> Expr {
binary_expr(self, Operator::And, other)
}
/// Return `self || other`
pub fn or(self, other: Expr) -> Expr {
binary_expr(self, Operator::Or, other)
}
/// Return `self LIKE other`
pub fn like(self, other: Expr) -> Expr {
Expr::Like(Like::new(
false,
Box::new(self),
Box::new(other),
None,
false,
))
}
/// Return `self NOT LIKE other`
pub fn not_like(self, other: Expr) -> Expr {
Expr::Like(Like::new(
true,
Box::new(self),
Box::new(other),
None,
false,
))
}
/// Return `self ILIKE other`
pub fn ilike(self, other: Expr) -> Expr {
Expr::Like(Like::new(
false,
Box::new(self),
Box::new(other),
None,
true,
))
}
/// Return `self NOT ILIKE other`
pub fn not_ilike(self, other: Expr) -> Expr {
Expr::Like(Like::new(true, Box::new(self), Box::new(other), None, true))
}
/// Return the name to use for the specific Expr, recursing into
/// `Expr::Sort` as appropriate
pub fn name_for_alias(&self) -> Result<String> {
match self {
// call Expr::display_name() on a Expr::Sort will throw an error
Expr::Sort(Sort { expr, .. }) => expr.name_for_alias(),
expr => expr.display_name(),
}
}
/// Ensure `expr` has the name as `original_name` by adding an
/// alias if necessary.
pub fn alias_if_changed(self, original_name: String) -> Result<Expr> {
let new_name = self.name_for_alias()?;
if new_name == original_name {
return Ok(self);
}
Ok(self.alias(original_name))
}
/// Return `self AS name` alias expression
pub fn alias(self, name: impl Into<String>) -> Expr {
match self {
Expr::Sort(Sort {
expr,
asc,
nulls_first,
}) => Expr::Sort(Sort::new(Box::new(expr.alias(name)), asc, nulls_first)),
_ => Expr::Alias(Alias::new(self, name.into())),
}
}
/// Remove an alias from an expression if one exists.
pub fn unalias(self) -> Expr {
match self {
Expr::Alias(alias) => alias.expr.as_ref().clone(),
_ => self,
}
}
/// Return `self IN <list>` if `negated` is false, otherwise
/// return `self NOT IN <list>`.a
pub fn in_list(self, list: Vec<Expr>, negated: bool) -> Expr {
Expr::InList(InList::new(Box::new(self), list, negated))
}
/// Return `IsNull(Box(self))
pub fn is_null(self) -> Expr {
Expr::IsNull(Box::new(self))
}
/// Return `IsNotNull(Box(self))
pub fn is_not_null(self) -> Expr {
Expr::IsNotNull(Box::new(self))
}
/// Create a sort expression from an existing expression.
///
/// ```
/// # use datafusion_expr::col;
/// let sort_expr = col("foo").sort(true, true); // SORT ASC NULLS_FIRST
/// ```
pub fn sort(self, asc: bool, nulls_first: bool) -> Expr {
Expr::Sort(Sort::new(Box::new(self), asc, nulls_first))
}
/// Return `IsTrue(Box(self))`
pub fn is_true(self) -> Expr {
Expr::IsTrue(Box::new(self))
}
/// Return `IsNotTrue(Box(self))`
pub fn is_not_true(self) -> Expr {
Expr::IsNotTrue(Box::new(self))
}
/// Return `IsFalse(Box(self))`
pub fn is_false(self) -> Expr {
Expr::IsFalse(Box::new(self))
}
/// Return `IsNotFalse(Box(self))`
pub fn is_not_false(self) -> Expr {
Expr::IsNotFalse(Box::new(self))
}
/// Return `IsUnknown(Box(self))`
pub fn is_unknown(self) -> Expr {
Expr::IsUnknown(Box::new(self))
}
/// Return `IsNotUnknown(Box(self))`
pub fn is_not_unknown(self) -> Expr {
Expr::IsNotUnknown(Box::new(self))
}
/// return `self BETWEEN low AND high`
pub fn between(self, low: Expr, high: Expr) -> Expr {
Expr::Between(Between::new(
Box::new(self),
false,
Box::new(low),
Box::new(high),
))
}
/// return `self NOT BETWEEN low AND high`
pub fn not_between(self, low: Expr, high: Expr) -> Expr {
Expr::Between(Between::new(
Box::new(self),
true,
Box::new(low),
Box::new(high),
))
}
/// Return access to the named field. Example `expr["name"]`
///
/// ## Access field "my_field" from column "c1"
///
/// For example if column "c1" holds documents like this
///
/// ```json
/// {
/// "my_field": 123.34,
/// "other_field": "Boston",
/// }
/// ```
///
/// You can access column "my_field" with
///
/// ```
/// # use datafusion_expr::{col};
/// let expr = col("c1")
/// .field("my_field");
/// assert_eq!(expr.display_name().unwrap(), "c1[my_field]");
/// ```
pub fn field(self, name: impl Into<String>) -> Self {
Expr::GetIndexedField(GetIndexedField {
expr: Box::new(self),
field: GetFieldAccess::NamedStructField {
name: ScalarValue::Utf8(Some(name.into())),
},
})
}
/// Return access to the element field. Example `expr["name"]`
///
/// ## Example Access element 2 from column "c1"
///
/// For example if column "c1" holds documents like this
///
/// ```json
/// [10, 20, 30, 40]
/// ```
///
/// You can access the value "30" with
///
/// ```
/// # use datafusion_expr::{lit, col, Expr};
/// let expr = col("c1")
/// .index(lit(3));
/// assert_eq!(expr.display_name().unwrap(), "c1[Int32(3)]");
/// ```
pub fn index(self, key: Expr) -> Self {
Expr::GetIndexedField(GetIndexedField {
expr: Box::new(self),
field: GetFieldAccess::ListIndex { key: Box::new(key) },
})
}
/// Return elements between `1` based `start` and `stop`, for
/// example `expr[1:3]`
///
/// ## Example: Access element 2, 3, 4 from column "c1"
///
/// For example if column "c1" holds documents like this
///
/// ```json
/// [10, 20, 30, 40]
/// ```
///
/// You can access the value `[20, 30, 40]` with
///
/// ```
/// # use datafusion_expr::{lit, col};
/// let expr = col("c1")
/// .range(lit(2), lit(4));
/// assert_eq!(expr.display_name().unwrap(), "c1[Int32(2):Int32(4)]");
/// ```
pub fn range(self, start: Expr, stop: Expr) -> Self {
Expr::GetIndexedField(GetIndexedField {
expr: Box::new(self),
field: GetFieldAccess::ListRange {
start: Box::new(start),
stop: Box::new(stop),
},
})
}
pub fn try_into_col(&self) -> Result<Column> {
match self {
Expr::Column(it) => Ok(it.clone()),
_ => plan_err!("Could not coerce '{self}' into Column!"),
}
}
/// Return all referenced columns of this expression.
pub fn to_columns(&self) -> Result<HashSet<Column>> {
let mut using_columns = HashSet::new();
expr_to_columns(self, &mut using_columns)?;
Ok(using_columns)
}
/// Return true when the expression contains out reference(correlated) expressions.
pub fn contains_outer(&self) -> bool {
!find_out_reference_exprs(self).is_empty()
}
}
#[macro_export]
macro_rules! expr_vec_fmt {
( $ARRAY:expr ) => {{
$ARRAY
.iter()
.map(|e| format!("{e}"))
.collect::<Vec<String>>()
.join(", ")
}};
}
/// Format expressions for display as part of a logical plan. In many cases, this will produce
/// similar output to `Expr.name()` except that column names will be prefixed with '#'.
impl fmt::Display for Expr {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Expr::Alias(Alias { expr, name, .. }) => write!(f, "{expr} AS {name}"),
Expr::Column(c) => write!(f, "{c}"),
Expr::OuterReferenceColumn(_, c) => write!(f, "outer_ref({c})"),
Expr::ScalarVariable(_, var_names) => write!(f, "{}", var_names.join(".")),
Expr::Literal(v) => write!(f, "{v:?}"),
Expr::Case(case) => {
write!(f, "CASE ")?;
if let Some(e) = &case.expr {
write!(f, "{e} ")?;
}
for (w, t) in &case.when_then_expr {
write!(f, "WHEN {w} THEN {t} ")?;
}
if let Some(e) = &case.else_expr {
write!(f, "ELSE {e} ")?;
}
write!(f, "END")
}
Expr::Cast(Cast { expr, data_type }) => {
write!(f, "CAST({expr} AS {data_type:?})")
}
Expr::TryCast(TryCast { expr, data_type }) => {
write!(f, "TRY_CAST({expr} AS {data_type:?})")
}
Expr::Not(expr) => write!(f, "NOT {expr}"),
Expr::Negative(expr) => write!(f, "(- {expr})"),
Expr::IsNull(expr) => write!(f, "{expr} IS NULL"),
Expr::IsNotNull(expr) => write!(f, "{expr} IS NOT NULL"),
Expr::IsTrue(expr) => write!(f, "{expr} IS TRUE"),
Expr::IsFalse(expr) => write!(f, "{expr} IS FALSE"),
Expr::IsUnknown(expr) => write!(f, "{expr} IS UNKNOWN"),
Expr::IsNotTrue(expr) => write!(f, "{expr} IS NOT TRUE"),
Expr::IsNotFalse(expr) => write!(f, "{expr} IS NOT FALSE"),
Expr::IsNotUnknown(expr) => write!(f, "{expr} IS NOT UNKNOWN"),
Expr::Exists(Exists {
subquery,
negated: true,
}) => write!(f, "NOT EXISTS ({subquery:?})"),
Expr::Exists(Exists {
subquery,
negated: false,
}) => write!(f, "EXISTS ({subquery:?})"),
Expr::InSubquery(InSubquery {
expr,
subquery,
negated: true,
}) => write!(f, "{expr} NOT IN ({subquery:?})"),
Expr::InSubquery(InSubquery {
expr,
subquery,
negated: false,
}) => write!(f, "{expr} IN ({subquery:?})"),
Expr::ScalarSubquery(subquery) => write!(f, "({subquery:?})"),
Expr::BinaryExpr(expr) => write!(f, "{expr}"),
Expr::Sort(Sort {
expr,
asc,
nulls_first,
}) => {
if *asc {
write!(f, "{expr} ASC")?;
} else {
write!(f, "{expr} DESC")?;
}
if *nulls_first {
write!(f, " NULLS FIRST")
} else {
write!(f, " NULLS LAST")
}
}
Expr::ScalarFunction(func) => {
fmt_function(f, &func.fun.to_string(), false, &func.args, true)
}
Expr::ScalarUDF(ScalarUDF { fun, args }) => {
fmt_function(f, &fun.name, false, args, true)
}
Expr::WindowFunction(WindowFunction {
fun,
args,
partition_by,
order_by,
window_frame,
}) => {
fmt_function(f, &fun.to_string(), false, args, true)?;
if !partition_by.is_empty() {
write!(f, " PARTITION BY [{}]", expr_vec_fmt!(partition_by))?;
}
if !order_by.is_empty() {
write!(f, " ORDER BY [{}]", expr_vec_fmt!(order_by))?;
}
write!(
f,
" {} BETWEEN {} AND {}",
window_frame.units, window_frame.start_bound, window_frame.end_bound
)?;
Ok(())
}
Expr::AggregateFunction(AggregateFunction {
fun,
distinct,
ref args,
filter,
order_by,
..
}) => {
fmt_function(f, &fun.to_string(), *distinct, args, true)?;
if let Some(fe) = filter {
write!(f, " FILTER (WHERE {fe})")?;
}
if let Some(ob) = order_by {
write!(f, " ORDER BY [{}]", expr_vec_fmt!(ob))?;
}
Ok(())
}
Expr::AggregateUDF(AggregateUDF {
fun,
ref args,
filter,
order_by,
..
}) => {
fmt_function(f, &fun.name, false, args, true)?;
if let Some(fe) = filter {
write!(f, " FILTER (WHERE {fe})")?;
}
if let Some(ob) = order_by {
write!(f, " ORDER BY [{}]", expr_vec_fmt!(ob))?;
}
Ok(())
}
Expr::Between(Between {
expr,
negated,
low,
high,
}) => {
if *negated {
write!(f, "{expr} NOT BETWEEN {low} AND {high}")
} else {
write!(f, "{expr} BETWEEN {low} AND {high}")
}
}
Expr::Like(Like {
negated,
expr,
pattern,
escape_char,
case_insensitive,
}) => {
write!(f, "{expr}")?;
let op_name = if *case_insensitive { "ILIKE" } else { "LIKE" };
if *negated {
write!(f, " NOT")?;
}
if let Some(char) = escape_char {
write!(f, " {op_name} {pattern} ESCAPE '{char}'")
} else {
write!(f, " {op_name} {pattern}")
}
}
Expr::SimilarTo(Like {
negated,
expr,
pattern,
escape_char,
case_insensitive: _,
}) => {
write!(f, "{expr}")?;
if *negated {
write!(f, " NOT")?;
}
if let Some(char) = escape_char {
write!(f, " SIMILAR TO {pattern} ESCAPE '{char}'")
} else {
write!(f, " SIMILAR TO {pattern}")
}
}
Expr::InList(InList {
expr,
list,
negated,
}) => {
if *negated {
write!(f, "{expr} NOT IN ([{}])", expr_vec_fmt!(list))
} else {
write!(f, "{expr} IN ([{}])", expr_vec_fmt!(list))
}
}
Expr::Wildcard => write!(f, "*"),
Expr::QualifiedWildcard { qualifier } => write!(f, "{qualifier}.*"),
Expr::GetIndexedField(GetIndexedField { field, expr }) => match field {
GetFieldAccess::NamedStructField { name } => {
write!(f, "({expr})[{name}]")
}
GetFieldAccess::ListIndex { key } => write!(f, "({expr})[{key}]"),
GetFieldAccess::ListRange { start, stop } => {
write!(f, "({expr})[{start}:{stop}]")
}
},
Expr::GroupingSet(grouping_sets) => match grouping_sets {
GroupingSet::Rollup(exprs) => {
// ROLLUP (c0, c1, c2)
write!(f, "ROLLUP ({})", expr_vec_fmt!(exprs))
}
GroupingSet::Cube(exprs) => {
// CUBE (c0, c1, c2)
write!(f, "CUBE ({})", expr_vec_fmt!(exprs))
}
GroupingSet::GroupingSets(lists_of_exprs) => {
// GROUPING SETS ((c0), (c1, c2), (c3, c4))
write!(
f,
"GROUPING SETS ({})",
lists_of_exprs
.iter()
.map(|exprs| format!("({})", expr_vec_fmt!(exprs)))
.collect::<Vec<String>>()
.join(", ")
)
}
},
Expr::Placeholder(Placeholder { id, .. }) => write!(f, "{id}"),
}
}
}
fn fmt_function(
f: &mut fmt::Formatter,
fun: &str,
distinct: bool,
args: &[Expr],
display: bool,
) -> fmt::Result {
let args: Vec<String> = match display {
true => args.iter().map(|arg| format!("{arg}")).collect(),
false => args.iter().map(|arg| format!("{arg:?}")).collect(),
};
// let args: Vec<String> = args.iter().map(|arg| format!("{:?}", arg)).collect();
let distinct_str = match distinct {
true => "DISTINCT ",
false => "",
};
write!(f, "{}({}{})", fun, distinct_str, args.join(", "))
}
fn create_function_name(fun: &str, distinct: bool, args: &[Expr]) -> Result<String> {
let names: Vec<String> = args.iter().map(create_name).collect::<Result<_>>()?;
let distinct_str = match distinct {
true => "DISTINCT ",
false => "",
};
Ok(format!("{}({}{})", fun, distinct_str, names.join(",")))
}
/// Returns a readable name of an expression based on the input schema.
/// This function recursively transverses the expression for names such as "CAST(a > 2)".
fn create_name(e: &Expr) -> Result<String> {
match e {
Expr::Alias(Alias { name, .. }) => Ok(name.clone()),
Expr::Column(c) => Ok(c.flat_name()),
Expr::OuterReferenceColumn(_, c) => Ok(format!("outer_ref({})", c.flat_name())),
Expr::ScalarVariable(_, variable_names) => Ok(variable_names.join(".")),
Expr::Literal(value) => Ok(format!("{value:?}")),
Expr::BinaryExpr(binary_expr) => {
let left = create_name(binary_expr.left.as_ref())?;
let right = create_name(binary_expr.right.as_ref())?;
Ok(format!("{} {} {}", left, binary_expr.op, right))
}
Expr::Like(Like {
negated,
expr,
pattern,
escape_char,
case_insensitive,
}) => {
let s = format!(
"{} {}{} {} {}",
expr,
if *negated { "NOT " } else { "" },
if *case_insensitive { "ILIKE" } else { "LIKE" },
pattern,
if let Some(char) = escape_char {
format!("CHAR '{char}'")
} else {
"".to_string()
}
);
Ok(s)
}
Expr::SimilarTo(Like {
negated,
expr,
pattern,
escape_char,
case_insensitive: _,
}) => {
let s = format!(
"{} {} {} {}",
expr,
if *negated {
"NOT SIMILAR TO"
} else {
"SIMILAR TO"
},
pattern,
if let Some(char) = escape_char {
format!("CHAR '{char}'")
} else {
"".to_string()
}
);
Ok(s)
}
Expr::Case(case) => {
let mut name = "CASE ".to_string();
if let Some(e) = &case.expr {
let e = create_name(e)?;
let _ = write!(name, "{e} ");
}
for (w, t) in &case.when_then_expr {
let when = create_name(w)?;
let then = create_name(t)?;
let _ = write!(name, "WHEN {when} THEN {then} ");
}
if let Some(e) = &case.else_expr {
let e = create_name(e)?;
let _ = write!(name, "ELSE {e} ");
}
name += "END";
Ok(name)
}
Expr::Cast(Cast { expr, .. }) => {
// CAST does not change the expression name
create_name(expr)
}
Expr::TryCast(TryCast { expr, .. }) => {
// CAST does not change the expression name
create_name(expr)
}
Expr::Not(expr) => {
let expr = create_name(expr)?;
Ok(format!("NOT {expr}"))
}
Expr::Negative(expr) => {
let expr = create_name(expr)?;
Ok(format!("(- {expr})"))
}
Expr::IsNull(expr) => {
let expr = create_name(expr)?;
Ok(format!("{expr} IS NULL"))
}
Expr::IsNotNull(expr) => {
let expr = create_name(expr)?;
Ok(format!("{expr} IS NOT NULL"))
}
Expr::IsTrue(expr) => {
let expr = create_name(expr)?;
Ok(format!("{expr} IS TRUE"))
}
Expr::IsFalse(expr) => {
let expr = create_name(expr)?;
Ok(format!("{expr} IS FALSE"))
}
Expr::IsUnknown(expr) => {
let expr = create_name(expr)?;
Ok(format!("{expr} IS UNKNOWN"))
}
Expr::IsNotTrue(expr) => {
let expr = create_name(expr)?;
Ok(format!("{expr} IS NOT TRUE"))
}
Expr::IsNotFalse(expr) => {
let expr = create_name(expr)?;
Ok(format!("{expr} IS NOT FALSE"))
}
Expr::IsNotUnknown(expr) => {
let expr = create_name(expr)?;
Ok(format!("{expr} IS NOT UNKNOWN"))
}
Expr::Exists(Exists { negated: true, .. }) => Ok("NOT EXISTS".to_string()),
Expr::Exists(Exists { negated: false, .. }) => Ok("EXISTS".to_string()),
Expr::InSubquery(InSubquery { negated: true, .. }) => Ok("NOT IN".to_string()),
Expr::InSubquery(InSubquery { negated: false, .. }) => Ok("IN".to_string()),
Expr::ScalarSubquery(subquery) => {
Ok(subquery.subquery.schema().field(0).name().clone())
}
Expr::GetIndexedField(GetIndexedField { expr, field }) => {
let expr = create_name(expr)?;
match field {
GetFieldAccess::NamedStructField { name } => {
Ok(format!("{expr}[{name}]"))
}
GetFieldAccess::ListIndex { key } => {
let key = create_name(key)?;
Ok(format!("{expr}[{key}]"))
}
GetFieldAccess::ListRange { start, stop } => {
let start = create_name(start)?;
let stop = create_name(stop)?;
Ok(format!("{expr}[{start}:{stop}]"))
}
}
}
Expr::ScalarFunction(func) => {
create_function_name(&func.fun.to_string(), false, &func.args)
}
Expr::ScalarUDF(ScalarUDF { fun, args }) => {
create_function_name(&fun.name, false, args)
}
Expr::WindowFunction(WindowFunction {
fun,
args,
window_frame,
partition_by,
order_by,
}) => {
let mut parts: Vec<String> =
vec![create_function_name(&fun.to_string(), false, args)?];
if !partition_by.is_empty() {
parts.push(format!("PARTITION BY [{}]", expr_vec_fmt!(partition_by)));
}
if !order_by.is_empty() {
parts.push(format!("ORDER BY [{}]", expr_vec_fmt!(order_by)));
}
parts.push(format!("{window_frame}"));
Ok(parts.join(" "))
}
Expr::AggregateFunction(AggregateFunction {
fun,
distinct,
args,
filter,
order_by,
}) => {
let mut name = create_function_name(&fun.to_string(), *distinct, args)?;
if let Some(fe) = filter {
name = format!("{name} FILTER (WHERE {fe})");
};
if let Some(order_by) = order_by {
name = format!("{name} ORDER BY [{}]", expr_vec_fmt!(order_by));
};
Ok(name)
}
Expr::AggregateUDF(AggregateUDF {
fun,
args,
filter,
order_by,
}) => {
let mut names = Vec::with_capacity(args.len());
for e in args {
names.push(create_name(e)?);
}
let mut info = String::new();
if let Some(fe) = filter {
info += &format!(" FILTER (WHERE {fe})");
}
if let Some(ob) = order_by {
info += &format!(" ORDER BY ([{}])", expr_vec_fmt!(ob));
}
Ok(format!("{}({}){}", fun.name, names.join(","), info))
}
Expr::GroupingSet(grouping_set) => match grouping_set {
GroupingSet::Rollup(exprs) => {
Ok(format!("ROLLUP ({})", create_names(exprs.as_slice())?))
}
GroupingSet::Cube(exprs) => {
Ok(format!("CUBE ({})", create_names(exprs.as_slice())?))
}
GroupingSet::GroupingSets(lists_of_exprs) => {
let mut list_of_names = vec![];
for exprs in lists_of_exprs {
list_of_names.push(format!("({})", create_names(exprs.as_slice())?));
}
Ok(format!("GROUPING SETS ({})", list_of_names.join(", ")))
}
},
Expr::InList(InList {
expr,
list,
negated,
}) => {
let expr = create_name(expr)?;
let list = list.iter().map(create_name);
if *negated {
Ok(format!("{expr} NOT IN ({list:?})"))
} else {
Ok(format!("{expr} IN ({list:?})"))
}
}
Expr::Between(Between {
expr,
negated,
low,
high,
}) => {
let expr = create_name(expr)?;
let low = create_name(low)?;
let high = create_name(high)?;
if *negated {
Ok(format!("{expr} NOT BETWEEN {low} AND {high}"))
} else {
Ok(format!("{expr} BETWEEN {low} AND {high}"))
}
}
Expr::Sort { .. } => {
internal_err!("Create name does not support sort expression")
}
Expr::Wildcard => Ok("*".to_string()),
Expr::QualifiedWildcard { .. } => {
internal_err!("Create name does not support qualified wildcard")
}
Expr::Placeholder(Placeholder { id, .. }) => Ok((*id).to_string()),
}
}
/// Create a comma separated list of names from a list of expressions
fn create_names(exprs: &[Expr]) -> Result<String> {
Ok(exprs
.iter()
.map(create_name)
.collect::<Result<Vec<String>>>()?
.join(", "))
}
#[cfg(test)]
mod test {
use crate::expr::Cast;
use crate::expr_fn::col;
use crate::{case, lit, Expr};
use arrow::datatypes::DataType;
use datafusion_common::Column;
use datafusion_common::{Result, ScalarValue};
#[test]
fn format_case_when() -> Result<()> {
let expr = case(col("a"))
.when(lit(1), lit(true))
.when(lit(0), lit(false))
.otherwise(lit(ScalarValue::Null))?;
let expected = "CASE a WHEN Int32(1) THEN Boolean(true) WHEN Int32(0) THEN Boolean(false) ELSE NULL END";
assert_eq!(expected, expr.canonical_name());
assert_eq!(expected, format!("{expr}"));
assert_eq!(expected, expr.display_name()?);
Ok(())
}
#[test]
fn format_cast() -> Result<()> {
let expr = Expr::Cast(Cast {
expr: Box::new(Expr::Literal(ScalarValue::Float32(Some(1.23)))),
data_type: DataType::Utf8,
});
let expected_canonical = "CAST(Float32(1.23) AS Utf8)";
assert_eq!(expected_canonical, expr.canonical_name());
assert_eq!(expected_canonical, format!("{expr}"));
// note that CAST intentionally has a name that is different from its `Display`
// representation. CAST does not change the name of expressions.
assert_eq!("Float32(1.23)", expr.display_name()?);
Ok(())
}
#[test]
fn test_partial_ord() {
// Test validates that partial ord is defined for Expr using hashes, not
// intended to exhaustively test all possibilities
let exp1 = col("a") + lit(1);
let exp2 = col("a") + lit(2);
let exp3 = !(col("a") + lit(2));
assert!(exp1 < exp2);
assert!(exp2 > exp1);
assert!(exp2 > exp3);
assert!(exp3 < exp2);
}
#[test]
fn test_collect_expr() -> Result<()> {
// single column
{
let expr = &Expr::Cast(Cast::new(Box::new(col("a")), DataType::Float64));
let columns = expr.to_columns()?;
assert_eq!(1, columns.len());
assert!(columns.contains(&Column::from_name("a")));
}
// multiple columns
{
let expr = col("a") + col("b") + lit(1);
let columns = expr.to_columns()?;
assert_eq!(2, columns.len());
assert!(columns.contains(&Column::from_name("a")));
assert!(columns.contains(&Column::from_name("b")));
}
Ok(())
}
}