1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Structures used to hold window function state (for implementing WindowUDFs)

use std::{collections::VecDeque, ops::Range, sync::Arc};

use arrow::{
    array::ArrayRef,
    compute::{concat, SortOptions},
    datatypes::DataType,
    record_batch::RecordBatch,
};
use datafusion_common::{
    internal_err,
    utils::{compare_rows, get_row_at_idx, search_in_slice},
    DataFusionError, Result, ScalarValue,
};

use crate::{WindowFrame, WindowFrameBound, WindowFrameUnits};

/// Holds the state of evaluating a window function
#[derive(Debug)]
pub struct WindowAggState {
    /// The range that we calculate the window function
    pub window_frame_range: Range<usize>,
    pub window_frame_ctx: Option<WindowFrameContext>,
    /// The index of the last row that its result is calculated inside the partition record batch buffer.
    pub last_calculated_index: usize,
    /// The offset of the deleted row number
    pub offset_pruned_rows: usize,
    /// Stores the results calculated by window frame
    pub out_col: ArrayRef,
    /// Keeps track of how many rows should be generated to be in sync with input record_batch.
    // (For each row in the input record batch we need to generate a window result).
    pub n_row_result_missing: usize,
    /// flag indicating whether we have received all data for this partition
    pub is_end: bool,
}

impl WindowAggState {
    pub fn prune_state(&mut self, n_prune: usize) {
        self.window_frame_range = Range {
            start: self.window_frame_range.start - n_prune,
            end: self.window_frame_range.end - n_prune,
        };
        self.last_calculated_index -= n_prune;
        self.offset_pruned_rows += n_prune;

        match self.window_frame_ctx.as_mut() {
            // Rows have no state do nothing
            Some(WindowFrameContext::Rows(_)) => {}
            Some(WindowFrameContext::Range { .. }) => {}
            Some(WindowFrameContext::Groups { state, .. }) => {
                let mut n_group_to_del = 0;
                for (_, end_idx) in &state.group_end_indices {
                    if n_prune < *end_idx {
                        break;
                    }
                    n_group_to_del += 1;
                }
                state.group_end_indices.drain(0..n_group_to_del);
                state
                    .group_end_indices
                    .iter_mut()
                    .for_each(|(_, start_idx)| *start_idx -= n_prune);
                state.current_group_idx -= n_group_to_del;
            }
            None => {}
        };
    }

    pub fn update(
        &mut self,
        out_col: &ArrayRef,
        partition_batch_state: &PartitionBatchState,
    ) -> Result<()> {
        self.last_calculated_index += out_col.len();
        self.out_col = concat(&[&self.out_col, &out_col])?;
        self.n_row_result_missing =
            partition_batch_state.record_batch.num_rows() - self.last_calculated_index;
        self.is_end = partition_batch_state.is_end;
        Ok(())
    }

    pub fn new(out_type: &DataType) -> Result<Self> {
        let empty_out_col = ScalarValue::try_from(out_type)?.to_array_of_size(0);
        Ok(Self {
            window_frame_range: Range { start: 0, end: 0 },
            window_frame_ctx: None,
            last_calculated_index: 0,
            offset_pruned_rows: 0,
            out_col: empty_out_col,
            n_row_result_missing: 0,
            is_end: false,
        })
    }
}

/// This object stores the window frame state for use in incremental calculations.
#[derive(Debug)]
pub enum WindowFrameContext {
    /// ROWS frames are inherently stateless.
    Rows(Arc<WindowFrame>),
    /// RANGE frames are stateful, they store indices specifying where the
    /// previous search left off. This amortizes the overall cost to O(n)
    /// where n denotes the row count.
    Range {
        window_frame: Arc<WindowFrame>,
        state: WindowFrameStateRange,
    },
    /// GROUPS frames are stateful, they store group boundaries and indices
    /// specifying where the previous search left off. This amortizes the
    /// overall cost to O(n) where n denotes the row count.
    Groups {
        window_frame: Arc<WindowFrame>,
        state: WindowFrameStateGroups,
    },
}

impl WindowFrameContext {
    /// Create a new state object for the given window frame.
    pub fn new(window_frame: Arc<WindowFrame>, sort_options: Vec<SortOptions>) -> Self {
        match window_frame.units {
            WindowFrameUnits::Rows => WindowFrameContext::Rows(window_frame),
            WindowFrameUnits::Range => WindowFrameContext::Range {
                window_frame,
                state: WindowFrameStateRange::new(sort_options),
            },
            WindowFrameUnits::Groups => WindowFrameContext::Groups {
                window_frame,
                state: WindowFrameStateGroups::default(),
            },
        }
    }

    /// This function calculates beginning/ending indices for the frame of the current row.
    pub fn calculate_range(
        &mut self,
        range_columns: &[ArrayRef],
        last_range: &Range<usize>,
        length: usize,
        idx: usize,
    ) -> Result<Range<usize>> {
        match self {
            WindowFrameContext::Rows(window_frame) => {
                Self::calculate_range_rows(window_frame, length, idx)
            }
            // Sort options is used in RANGE mode calculations because the
            // ordering or position of NULLs impact range calculations and
            // comparison of rows.
            WindowFrameContext::Range {
                window_frame,
                ref mut state,
            } => state.calculate_range(
                window_frame,
                last_range,
                range_columns,
                length,
                idx,
            ),
            // Sort options is not used in GROUPS mode calculations as the
            // inequality of two rows indicates a group change, and ordering
            // or position of NULLs do not impact inequality.
            WindowFrameContext::Groups {
                window_frame,
                ref mut state,
            } => state.calculate_range(window_frame, range_columns, length, idx),
        }
    }

    /// This function calculates beginning/ending indices for the frame of the current row.
    fn calculate_range_rows(
        window_frame: &Arc<WindowFrame>,
        length: usize,
        idx: usize,
    ) -> Result<Range<usize>> {
        let start = match window_frame.start_bound {
            // UNBOUNDED PRECEDING
            WindowFrameBound::Preceding(ScalarValue::UInt64(None)) => 0,
            WindowFrameBound::Preceding(ScalarValue::UInt64(Some(n))) => {
                if idx >= n as usize {
                    idx - n as usize
                } else {
                    0
                }
            }
            WindowFrameBound::CurrentRow => idx,
            // UNBOUNDED FOLLOWING
            WindowFrameBound::Following(ScalarValue::UInt64(None)) => {
                return internal_err!(
                    "Frame start cannot be UNBOUNDED FOLLOWING '{window_frame:?}'"
                )
            }
            WindowFrameBound::Following(ScalarValue::UInt64(Some(n))) => {
                std::cmp::min(idx + n as usize, length)
            }
            // ERRONEOUS FRAMES
            WindowFrameBound::Preceding(_) | WindowFrameBound::Following(_) => {
                return internal_err!("Rows should be Uint")
            }
        };
        let end = match window_frame.end_bound {
            // UNBOUNDED PRECEDING
            WindowFrameBound::Preceding(ScalarValue::UInt64(None)) => {
                return internal_err!(
                    "Frame end cannot be UNBOUNDED PRECEDING '{window_frame:?}'"
                )
            }
            WindowFrameBound::Preceding(ScalarValue::UInt64(Some(n))) => {
                if idx >= n as usize {
                    idx - n as usize + 1
                } else {
                    0
                }
            }
            WindowFrameBound::CurrentRow => idx + 1,
            // UNBOUNDED FOLLOWING
            WindowFrameBound::Following(ScalarValue::UInt64(None)) => length,
            WindowFrameBound::Following(ScalarValue::UInt64(Some(n))) => {
                std::cmp::min(idx + n as usize + 1, length)
            }
            // ERRONEOUS FRAMES
            WindowFrameBound::Preceding(_) | WindowFrameBound::Following(_) => {
                return internal_err!("Rows should be Uint")
            }
        };
        Ok(Range { start, end })
    }
}

/// State for each unique partition determined according to PARTITION BY column(s)
#[derive(Debug)]
pub struct PartitionBatchState {
    /// The record_batch belonging to current partition
    pub record_batch: RecordBatch,
    /// Flag indicating whether we have received all data for this partition
    pub is_end: bool,
    /// Number of rows emitted for each partition
    pub n_out_row: usize,
}

/// This structure encapsulates all the state information we require as we scan
/// ranges of data while processing RANGE frames.
/// Attribute `sort_options` stores the column ordering specified by the ORDER
/// BY clause. This information is used to calculate the range.
#[derive(Debug, Default)]
pub struct WindowFrameStateRange {
    sort_options: Vec<SortOptions>,
}

impl WindowFrameStateRange {
    /// Create a new object to store the search state.
    fn new(sort_options: Vec<SortOptions>) -> Self {
        Self { sort_options }
    }

    /// This function calculates beginning/ending indices for the frame of the current row.
    // Argument `last_range` stores the resulting indices from the previous search. Since the indices only
    // advance forward, we start from `last_range` subsequently. Thus, the overall
    // time complexity of linear search amortizes to O(n) where n denotes the total
    // row count.
    fn calculate_range(
        &mut self,
        window_frame: &Arc<WindowFrame>,
        last_range: &Range<usize>,
        range_columns: &[ArrayRef],
        length: usize,
        idx: usize,
    ) -> Result<Range<usize>> {
        let start = match window_frame.start_bound {
            WindowFrameBound::Preceding(ref n) => {
                if n.is_null() {
                    // UNBOUNDED PRECEDING
                    0
                } else {
                    self.calculate_index_of_row::<true, true>(
                        range_columns,
                        last_range,
                        idx,
                        Some(n),
                        length,
                    )?
                }
            }
            WindowFrameBound::CurrentRow => self.calculate_index_of_row::<true, true>(
                range_columns,
                last_range,
                idx,
                None,
                length,
            )?,
            WindowFrameBound::Following(ref n) => self
                .calculate_index_of_row::<true, false>(
                    range_columns,
                    last_range,
                    idx,
                    Some(n),
                    length,
                )?,
        };
        let end = match window_frame.end_bound {
            WindowFrameBound::Preceding(ref n) => self
                .calculate_index_of_row::<false, true>(
                    range_columns,
                    last_range,
                    idx,
                    Some(n),
                    length,
                )?,
            WindowFrameBound::CurrentRow => self.calculate_index_of_row::<false, false>(
                range_columns,
                last_range,
                idx,
                None,
                length,
            )?,
            WindowFrameBound::Following(ref n) => {
                if n.is_null() {
                    // UNBOUNDED FOLLOWING
                    length
                } else {
                    self.calculate_index_of_row::<false, false>(
                        range_columns,
                        last_range,
                        idx,
                        Some(n),
                        length,
                    )?
                }
            }
        };
        Ok(Range { start, end })
    }

    /// This function does the heavy lifting when finding range boundaries. It is meant to be
    /// called twice, in succession, to get window frame start and end indices (with `SIDE`
    /// supplied as true and false, respectively).
    fn calculate_index_of_row<const SIDE: bool, const SEARCH_SIDE: bool>(
        &mut self,
        range_columns: &[ArrayRef],
        last_range: &Range<usize>,
        idx: usize,
        delta: Option<&ScalarValue>,
        length: usize,
    ) -> Result<usize> {
        let current_row_values = get_row_at_idx(range_columns, idx)?;
        let end_range = if let Some(delta) = delta {
            let is_descending: bool = self
                .sort_options
                .first()
                .ok_or_else(|| {
                    DataFusionError::Internal(
                        "Sort options unexpectedly absent in a window frame".to_string(),
                    )
                })?
                .descending;

            current_row_values
                .iter()
                .map(|value| {
                    if value.is_null() {
                        return Ok(value.clone());
                    }
                    if SEARCH_SIDE == is_descending {
                        // TODO: Handle positive overflows.
                        value.add(delta)
                    } else if value.is_unsigned() && value < delta {
                        // NOTE: This gets a polymorphic zero without having long coercion code for ScalarValue.
                        //       If we decide to implement a "default" construction mechanism for ScalarValue,
                        //       change the following statement to use that.
                        value.sub(value)
                    } else {
                        // TODO: Handle negative overflows.
                        value.sub(delta)
                    }
                })
                .collect::<Result<Vec<ScalarValue>>>()?
        } else {
            current_row_values
        };
        let search_start = if SIDE {
            last_range.start
        } else {
            last_range.end
        };
        let compare_fn = |current: &[ScalarValue], target: &[ScalarValue]| {
            let cmp = compare_rows(current, target, &self.sort_options)?;
            Ok(if SIDE { cmp.is_lt() } else { cmp.is_le() })
        };
        search_in_slice(range_columns, &end_range, compare_fn, search_start, length)
    }
}

// In GROUPS mode, rows with duplicate sorting values are grouped together.
// Therefore, there must be an ORDER BY clause in the window definition to use GROUPS mode.
// The syntax is as follows:
//     GROUPS frame_start [ frame_exclusion ]
//     GROUPS BETWEEN frame_start AND frame_end [ frame_exclusion ]
// The optional frame_exclusion specifier is not yet supported.
// The frame_start and frame_end parameters allow us to specify which rows the window
// frame starts and ends with. They accept the following values:
//    - UNBOUNDED PRECEDING: Start with the first row of the partition. Possible only in frame_start.
//    - offset PRECEDING: When used in frame_start, it refers to the first row of the group
//                        that comes "offset" groups before the current group (i.e. the group
//                        containing the current row). When used in frame_end, it refers to the
//                        last row of the group that comes "offset" groups before the current group.
//    - CURRENT ROW: When used in frame_start, it refers to the first row of the group containing
//                   the current row. When used in frame_end, it refers to the last row of the group
//                   containing the current row.
//    - offset FOLLOWING: When used in frame_start, it refers to the first row of the group
//                        that comes "offset" groups after the current group (i.e. the group
//                        containing the current row). When used in frame_end, it refers to the
//                        last row of the group that comes "offset" groups after the current group.
//    - UNBOUNDED FOLLOWING: End with the last row of the partition. Possible only in frame_end.

/// This structure encapsulates all the state information we require as we
/// scan groups of data while processing window frames.
#[derive(Debug, Default)]
pub struct WindowFrameStateGroups {
    /// A tuple containing group values and the row index where the group ends.
    /// Example: [[1, 1], [1, 1], [2, 1], [2, 1], ...] would correspond to
    ///          [([1, 1], 2), ([2, 1], 4), ...].
    pub group_end_indices: VecDeque<(Vec<ScalarValue>, usize)>,
    /// The group index to which the row index belongs.
    pub current_group_idx: usize,
}

impl WindowFrameStateGroups {
    fn calculate_range(
        &mut self,
        window_frame: &Arc<WindowFrame>,
        range_columns: &[ArrayRef],
        length: usize,
        idx: usize,
    ) -> Result<Range<usize>> {
        let start = match window_frame.start_bound {
            WindowFrameBound::Preceding(ref n) => {
                if n.is_null() {
                    // UNBOUNDED PRECEDING
                    0
                } else {
                    self.calculate_index_of_row::<true, true>(
                        range_columns,
                        idx,
                        Some(n),
                        length,
                    )?
                }
            }
            WindowFrameBound::CurrentRow => self.calculate_index_of_row::<true, true>(
                range_columns,
                idx,
                None,
                length,
            )?,
            WindowFrameBound::Following(ref n) => self
                .calculate_index_of_row::<true, false>(
                    range_columns,
                    idx,
                    Some(n),
                    length,
                )?,
        };
        let end = match window_frame.end_bound {
            WindowFrameBound::Preceding(ref n) => self
                .calculate_index_of_row::<false, true>(
                    range_columns,
                    idx,
                    Some(n),
                    length,
                )?,
            WindowFrameBound::CurrentRow => self.calculate_index_of_row::<false, false>(
                range_columns,
                idx,
                None,
                length,
            )?,
            WindowFrameBound::Following(ref n) => {
                if n.is_null() {
                    // UNBOUNDED FOLLOWING
                    length
                } else {
                    self.calculate_index_of_row::<false, false>(
                        range_columns,
                        idx,
                        Some(n),
                        length,
                    )?
                }
            }
        };
        Ok(Range { start, end })
    }

    /// This function does the heavy lifting when finding range boundaries. It is meant to be
    /// called twice, in succession, to get window frame start and end indices (with `SIDE`
    /// supplied as true and false, respectively). Generic argument `SEARCH_SIDE` determines
    /// the sign of `delta` (where true/false represents negative/positive respectively).
    fn calculate_index_of_row<const SIDE: bool, const SEARCH_SIDE: bool>(
        &mut self,
        range_columns: &[ArrayRef],
        idx: usize,
        delta: Option<&ScalarValue>,
        length: usize,
    ) -> Result<usize> {
        let delta = if let Some(delta) = delta {
            if let ScalarValue::UInt64(Some(value)) = delta {
                *value as usize
            } else {
                return internal_err!(
                    "Unexpectedly got a non-UInt64 value in a GROUPS mode window frame"
                );
            }
        } else {
            0
        };
        let mut group_start = 0;
        let last_group = self.group_end_indices.back_mut();
        if let Some((group_row, group_end)) = last_group {
            if *group_end < length {
                let new_group_row = get_row_at_idx(range_columns, *group_end)?;
                // If last/current group keys are the same, we extend the last group:
                if new_group_row.eq(group_row) {
                    // Update the end boundary of the group (search right boundary):
                    *group_end = search_in_slice(
                        range_columns,
                        group_row,
                        check_equality,
                        *group_end,
                        length,
                    )?;
                }
            }
            // Start searching from the last group boundary:
            group_start = *group_end;
        }

        // Advance groups until `idx` is inside a group:
        while idx >= group_start {
            let group_row = get_row_at_idx(range_columns, group_start)?;
            // Find end boundary of the group (search right boundary):
            let group_end = search_in_slice(
                range_columns,
                &group_row,
                check_equality,
                group_start,
                length,
            )?;
            self.group_end_indices.push_back((group_row, group_end));
            group_start = group_end;
        }

        // Update the group index `idx` belongs to:
        while self.current_group_idx < self.group_end_indices.len()
            && idx >= self.group_end_indices[self.current_group_idx].1
        {
            self.current_group_idx += 1;
        }

        // Find the group index of the frame boundary:
        let group_idx = if SEARCH_SIDE {
            if self.current_group_idx > delta {
                self.current_group_idx - delta
            } else {
                0
            }
        } else {
            self.current_group_idx + delta
        };

        // Extend `group_start_indices` until it includes at least `group_idx`:
        while self.group_end_indices.len() <= group_idx && group_start < length {
            let group_row = get_row_at_idx(range_columns, group_start)?;
            // Find end boundary of the group (search right boundary):
            let group_end = search_in_slice(
                range_columns,
                &group_row,
                check_equality,
                group_start,
                length,
            )?;
            self.group_end_indices.push_back((group_row, group_end));
            group_start = group_end;
        }

        // Calculate index of the group boundary:
        Ok(match (SIDE, SEARCH_SIDE) {
            // Window frame start:
            (true, _) => {
                let group_idx = std::cmp::min(group_idx, self.group_end_indices.len());
                if group_idx > 0 {
                    // Normally, start at the boundary of the previous group.
                    self.group_end_indices[group_idx - 1].1
                } else {
                    // If previous group is out of the table, start at zero.
                    0
                }
            }
            // Window frame end, PRECEDING n
            (false, true) => {
                if self.current_group_idx >= delta {
                    let group_idx = self.current_group_idx - delta;
                    self.group_end_indices[group_idx].1
                } else {
                    // Group is out of the table, therefore end at zero.
                    0
                }
            }
            // Window frame end, FOLLOWING n
            (false, false) => {
                let group_idx = std::cmp::min(
                    self.current_group_idx + delta,
                    self.group_end_indices.len() - 1,
                );
                self.group_end_indices[group_idx].1
            }
        })
    }
}

fn check_equality(current: &[ScalarValue], target: &[ScalarValue]) -> Result<bool> {
    Ok(current == target)
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{WindowFrame, WindowFrameBound, WindowFrameUnits};
    use arrow::array::{ArrayRef, Float64Array};
    use datafusion_common::{Result, ScalarValue};
    use std::ops::Range;
    use std::sync::Arc;

    fn get_test_data() -> (Vec<ArrayRef>, Vec<SortOptions>) {
        let range_columns: Vec<ArrayRef> = vec![Arc::new(Float64Array::from(vec![
            5.0, 7.0, 8.0, 8.0, 9., 10., 10., 10., 11.,
        ]))];
        let sort_options = vec![SortOptions {
            descending: false,
            nulls_first: false,
        }];

        (range_columns, sort_options)
    }

    fn assert_expected(
        expected_results: Vec<(Range<usize>, usize)>,
        window_frame: &Arc<WindowFrame>,
    ) -> Result<()> {
        let mut window_frame_groups = WindowFrameStateGroups::default();
        let (range_columns, _) = get_test_data();
        let n_row = range_columns[0].len();
        for (idx, (expected_range, expected_group_idx)) in
            expected_results.into_iter().enumerate()
        {
            let range = window_frame_groups.calculate_range(
                window_frame,
                &range_columns,
                n_row,
                idx,
            )?;
            assert_eq!(range, expected_range);
            assert_eq!(window_frame_groups.current_group_idx, expected_group_idx);
        }
        Ok(())
    }

    #[test]
    fn test_window_frame_group_boundaries() -> Result<()> {
        let window_frame = Arc::new(WindowFrame {
            units: WindowFrameUnits::Groups,
            start_bound: WindowFrameBound::Preceding(ScalarValue::UInt64(Some(1))),
            end_bound: WindowFrameBound::Following(ScalarValue::UInt64(Some(1))),
        });
        let expected_results = vec![
            (Range { start: 0, end: 2 }, 0),
            (Range { start: 0, end: 4 }, 1),
            (Range { start: 1, end: 5 }, 2),
            (Range { start: 1, end: 5 }, 2),
            (Range { start: 2, end: 8 }, 3),
            (Range { start: 4, end: 9 }, 4),
            (Range { start: 4, end: 9 }, 4),
            (Range { start: 4, end: 9 }, 4),
            (Range { start: 5, end: 9 }, 5),
        ];
        assert_expected(expected_results, &window_frame)
    }

    #[test]
    fn test_window_frame_group_boundaries_both_following() -> Result<()> {
        let window_frame = Arc::new(WindowFrame {
            units: WindowFrameUnits::Groups,
            start_bound: WindowFrameBound::Following(ScalarValue::UInt64(Some(1))),
            end_bound: WindowFrameBound::Following(ScalarValue::UInt64(Some(2))),
        });
        let expected_results = vec![
            (Range::<usize> { start: 1, end: 4 }, 0),
            (Range::<usize> { start: 2, end: 5 }, 1),
            (Range::<usize> { start: 4, end: 8 }, 2),
            (Range::<usize> { start: 4, end: 8 }, 2),
            (Range::<usize> { start: 5, end: 9 }, 3),
            (Range::<usize> { start: 8, end: 9 }, 4),
            (Range::<usize> { start: 8, end: 9 }, 4),
            (Range::<usize> { start: 8, end: 9 }, 4),
            (Range::<usize> { start: 9, end: 9 }, 5),
        ];
        assert_expected(expected_results, &window_frame)
    }

    #[test]
    fn test_window_frame_group_boundaries_both_preceding() -> Result<()> {
        let window_frame = Arc::new(WindowFrame {
            units: WindowFrameUnits::Groups,
            start_bound: WindowFrameBound::Preceding(ScalarValue::UInt64(Some(2))),
            end_bound: WindowFrameBound::Preceding(ScalarValue::UInt64(Some(1))),
        });
        let expected_results = vec![
            (Range::<usize> { start: 0, end: 0 }, 0),
            (Range::<usize> { start: 0, end: 1 }, 1),
            (Range::<usize> { start: 0, end: 2 }, 2),
            (Range::<usize> { start: 0, end: 2 }, 2),
            (Range::<usize> { start: 1, end: 4 }, 3),
            (Range::<usize> { start: 2, end: 5 }, 4),
            (Range::<usize> { start: 2, end: 5 }, 4),
            (Range::<usize> { start: 2, end: 5 }, 4),
            (Range::<usize> { start: 4, end: 8 }, 5),
        ];
        assert_expected(expected_results, &window_frame)
    }
}