1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Function module contains typing and signature for built-in and user defined functions.
use crate::{Accumulator, BuiltinScalarFunction, PartitionEvaluator, Signature};
use crate::{AggregateFunction, BuiltInWindowFunction, ColumnarValue};
use arrow::datatypes::DataType;
use datafusion_common::utils::datafusion_strsim;
use datafusion_common::Result;
use std::sync::Arc;
use strum::IntoEnumIterator;
/// Scalar function
///
/// The Fn param is the wrapped function but be aware that the function will
/// be passed with the slice / vec of columnar values (either scalar or array)
/// with the exception of zero param function, where a singular element vec
/// will be passed. In that case the single element is a null array to indicate
/// the batch's row count (so that the generative zero-argument function can know
/// the result array size).
pub type ScalarFunctionImplementation =
Arc<dyn Fn(&[ColumnarValue]) -> Result<ColumnarValue> + Send + Sync>;
/// Factory that returns the functions's return type given the input argument types
pub type ReturnTypeFunction =
Arc<dyn Fn(&[DataType]) -> Result<Arc<DataType>> + Send + Sync>;
/// Factory that returns an accumulator for the given aggregate, given
/// its return datatype.
pub type AccumulatorFactoryFunction =
Arc<dyn Fn(&DataType) -> Result<Box<dyn Accumulator>> + Send + Sync>;
/// Factory that creates a PartitionEvaluator for the given window
/// function
pub type PartitionEvaluatorFactory =
Arc<dyn Fn() -> Result<Box<dyn PartitionEvaluator>> + Send + Sync>;
/// Factory that returns the types used by an aggregator to serialize
/// its state, given its return datatype.
pub type StateTypeFunction =
Arc<dyn Fn(&DataType) -> Result<Arc<Vec<DataType>>> + Send + Sync>;
/// Returns the datatype of the scalar function
#[deprecated(
since = "27.0.0",
note = "please use `BuiltinScalarFunction::return_type` instead"
)]
pub fn return_type(
fun: &BuiltinScalarFunction,
input_expr_types: &[DataType],
) -> Result<DataType> {
fun.return_type(input_expr_types)
}
/// Return the [`Signature`] supported by the function `fun`.
#[deprecated(
since = "27.0.0",
note = "please use `BuiltinScalarFunction::signature` instead"
)]
pub fn signature(fun: &BuiltinScalarFunction) -> Signature {
fun.signature()
}
/// Suggest a valid function based on an invalid input function name
pub fn suggest_valid_function(input_function_name: &str, is_window_func: bool) -> String {
let valid_funcs = if is_window_func {
// All aggregate functions and builtin window functions
AggregateFunction::iter()
.map(|func| func.to_string())
.chain(BuiltInWindowFunction::iter().map(|func| func.to_string()))
.collect()
} else {
// All scalar functions and aggregate functions
BuiltinScalarFunction::iter()
.map(|func| func.to_string())
.chain(AggregateFunction::iter().map(|func| func.to_string()))
.collect()
};
find_closest_match(valid_funcs, input_function_name)
}
/// Find the closest matching string to the target string in the candidates list, using edit distance(case insensitve)
/// Input `candidates` must not be empty otherwise it will panic
fn find_closest_match(candidates: Vec<String>, target: &str) -> String {
let target = target.to_lowercase();
candidates
.into_iter()
.min_by_key(|candidate| {
datafusion_strsim::levenshtein(&candidate.to_lowercase(), &target)
})
.expect("No candidates provided.") // Panic if `candidates` argument is empty
}