1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! This module provides a builder for creating LogicalPlans

use crate::dml::{CopyOptions, CopyTo};
use crate::expr::Alias;
use crate::expr_rewriter::{
    coerce_plan_expr_for_schema, normalize_col,
    normalize_col_with_schemas_and_ambiguity_check, normalize_cols,
    rewrite_sort_cols_by_aggs,
};
use crate::type_coercion::binary::comparison_coercion;
use crate::utils::{columnize_expr, compare_sort_expr};
use crate::{and, binary_expr, DmlStatement, Operator, WriteOp};
use crate::{
    logical_plan::{
        Aggregate, Analyze, CrossJoin, Distinct, EmptyRelation, Explain, Filter, Join,
        JoinConstraint, JoinType, Limit, LogicalPlan, Partitioning, PlanType, Prepare,
        Projection, Repartition, Sort, SubqueryAlias, TableScan, Union, Unnest, Values,
        Window,
    },
    utils::{
        can_hash, expand_qualified_wildcard, expand_wildcard,
        find_valid_equijoin_key_pair, group_window_expr_by_sort_keys,
    },
    Expr, ExprSchemable, TableSource,
};
use arrow::datatypes::{DataType, Schema, SchemaRef};
use datafusion_common::plan_err;
use datafusion_common::UnnestOptions;
use datafusion_common::{
    display::ToStringifiedPlan, Column, DFField, DFSchema, DFSchemaRef, DataFusionError,
    FileType, FunctionalDependencies, OwnedTableReference, Result, ScalarValue,
    TableReference, ToDFSchema,
};
use std::any::Any;
use std::cmp::Ordering;
use std::collections::{HashMap, HashSet};
use std::convert::TryFrom;
use std::sync::Arc;

/// Default table name for unnamed table
pub const UNNAMED_TABLE: &str = "?table?";

/// Builder for logical plans
///
/// ```
/// # use datafusion_expr::{lit, col, LogicalPlanBuilder, logical_plan::table_scan};
/// # use datafusion_common::Result;
/// # use arrow::datatypes::{Schema, DataType, Field};
/// #
/// # fn main() -> Result<()> {
/// #
/// # fn employee_schema() -> Schema {
/// #    Schema::new(vec![
/// #           Field::new("id", DataType::Int32, false),
/// #           Field::new("first_name", DataType::Utf8, false),
/// #           Field::new("last_name", DataType::Utf8, false),
/// #           Field::new("state", DataType::Utf8, false),
/// #           Field::new("salary", DataType::Int32, false),
/// #       ])
/// #   }
/// #
/// // Create a plan similar to
/// // SELECT last_name
/// // FROM employees
/// // WHERE salary < 1000
/// let plan = table_scan(
///              Some("employee"),
///              &employee_schema(),
///              None,
///            )?
///            // Keep only rows where salary < 1000
///            .filter(col("salary").lt_eq(lit(1000)))?
///            // only show "last_name" in the final results
///            .project(vec![col("last_name")])?
///            .build()?;
///
/// # Ok(())
/// # }
/// ```
#[derive(Debug, Clone)]
pub struct LogicalPlanBuilder {
    plan: LogicalPlan,
}

impl LogicalPlanBuilder {
    /// Create a builder from an existing plan
    pub fn from(plan: LogicalPlan) -> Self {
        Self { plan }
    }

    /// Return the output schema of the plan build so far
    pub fn schema(&self) -> &DFSchemaRef {
        self.plan.schema()
    }

    /// Create an empty relation.
    ///
    /// `produce_one_row` set to true means this empty node needs to produce a placeholder row.
    pub fn empty(produce_one_row: bool) -> Self {
        Self::from(LogicalPlan::EmptyRelation(EmptyRelation {
            produce_one_row,
            schema: DFSchemaRef::new(DFSchema::empty()),
        }))
    }

    /// Create a values list based relation, and the schema is inferred from data, consuming
    /// `value`. See the [Postgres VALUES](https://www.postgresql.org/docs/current/queries-values.html)
    /// documentation for more details.
    ///
    /// By default, it assigns the names column1, column2, etc. to the columns of a VALUES table.
    /// The column names are not specified by the SQL standard and different database systems do it differently,
    /// so it's usually better to override the default names with a table alias list.
    ///
    /// If the values include params/binders such as $1, $2, $3, etc, then the `param_data_types` should be provided.
    pub fn values(mut values: Vec<Vec<Expr>>) -> Result<Self> {
        if values.is_empty() {
            return plan_err!("Values list cannot be empty");
        }
        let n_cols = values[0].len();
        if n_cols == 0 {
            return plan_err!("Values list cannot be zero length");
        }
        let empty_schema = DFSchema::empty();
        let mut field_types: Vec<Option<DataType>> = Vec::with_capacity(n_cols);
        for _ in 0..n_cols {
            field_types.push(None);
        }
        // hold all the null holes so that we can correct their data types later
        let mut nulls: Vec<(usize, usize)> = Vec::new();
        for (i, row) in values.iter().enumerate() {
            if row.len() != n_cols {
                return plan_err!(
                    "Inconsistent data length across values list: got {} values in row {} but expected {}",
                    row.len(),
                    i,
                    n_cols
                );
            }
            field_types = row
                .iter()
                .enumerate()
                .map(|(j, expr)| {
                    if let Expr::Literal(ScalarValue::Null) = expr {
                        nulls.push((i, j));
                        Ok(field_types[j].clone())
                    } else {
                        let data_type = expr.get_type(&empty_schema)?;
                        if let Some(prev_data_type) = &field_types[j] {
                            if prev_data_type != &data_type {
                                return plan_err!("Inconsistent data type across values list at row {i} column {j}");
                            }
                        }
                        Ok(Some(data_type))
                    }
                })
                .collect::<Result<Vec<Option<DataType>>>>()?;
        }
        let fields = field_types
            .iter()
            .enumerate()
            .map(|(j, data_type)| {
                // naming is following convention https://www.postgresql.org/docs/current/queries-values.html
                let name = &format!("column{}", j + 1);
                DFField::new_unqualified(
                    name,
                    data_type.clone().unwrap_or(DataType::Utf8),
                    true,
                )
            })
            .collect::<Vec<_>>();
        for (i, j) in nulls {
            values[i][j] = Expr::Literal(ScalarValue::try_from(fields[j].data_type())?);
        }
        let schema =
            DFSchemaRef::new(DFSchema::new_with_metadata(fields, HashMap::new())?);
        Ok(Self::from(LogicalPlan::Values(Values { schema, values })))
    }

    /// Convert a table provider into a builder with a TableScan
    ///
    /// Note that if you pass a string as `table_name`, it is treated
    /// as a SQL identifier, as described on [`TableReference`] and
    /// thus is normalized
    ///
    /// # Example:
    /// ```
    /// # use datafusion_expr::{lit, col, LogicalPlanBuilder,
    /// #  logical_plan::builder::LogicalTableSource, logical_plan::table_scan
    /// # };
    /// # use std::sync::Arc;
    /// # use arrow::datatypes::{Schema, DataType, Field};
    /// # use datafusion_common::TableReference;
    /// #
    /// # let employee_schema = Arc::new(Schema::new(vec![
    /// #           Field::new("id", DataType::Int32, false),
    /// # ])) as _;
    /// # let table_source = Arc::new(LogicalTableSource::new(employee_schema));
    /// // Scan table_source with the name "mytable" (after normalization)
    /// # let table = table_source.clone();
    /// let scan = LogicalPlanBuilder::scan("MyTable", table, None);
    ///
    /// // Scan table_source with the name "MyTable" by enclosing in quotes
    /// # let table = table_source.clone();
    /// let scan = LogicalPlanBuilder::scan(r#""MyTable""#, table, None);
    ///
    /// // Scan table_source with the name "MyTable" by forming the table reference
    /// # let table = table_source.clone();
    /// let table_reference = TableReference::bare("MyTable");
    /// let scan = LogicalPlanBuilder::scan(table_reference, table, None);
    /// ```
    pub fn scan(
        table_name: impl Into<OwnedTableReference>,
        table_source: Arc<dyn TableSource>,
        projection: Option<Vec<usize>>,
    ) -> Result<Self> {
        Self::scan_with_filters(table_name, table_source, projection, vec![])
    }

    /// Create a [CopyTo] for copying the contents of this builder to the specified file(s)
    pub fn copy_to(
        input: LogicalPlan,
        output_url: String,
        file_format: FileType,
        single_file_output: bool,
        copy_options: CopyOptions,
    ) -> Result<Self> {
        Ok(Self::from(LogicalPlan::Copy(CopyTo {
            input: Arc::new(input),
            output_url,
            file_format,
            single_file_output,
            copy_options,
        })))
    }

    /// Create a [DmlStatement] for inserting the contents of this builder into the named table
    pub fn insert_into(
        input: LogicalPlan,
        table_name: impl Into<OwnedTableReference>,
        table_schema: &Schema,
        overwrite: bool,
    ) -> Result<Self> {
        let table_schema = table_schema.clone().to_dfschema_ref()?;

        let op = if overwrite {
            WriteOp::InsertOverwrite
        } else {
            WriteOp::InsertInto
        };

        Ok(Self::from(LogicalPlan::Dml(DmlStatement {
            table_name: table_name.into(),
            table_schema,
            op,
            input: Arc::new(input),
        })))
    }

    /// Convert a table provider into a builder with a TableScan
    pub fn scan_with_filters(
        table_name: impl Into<OwnedTableReference>,
        table_source: Arc<dyn TableSource>,
        projection: Option<Vec<usize>>,
        filters: Vec<Expr>,
    ) -> Result<Self> {
        let table_name = table_name.into();

        if table_name.table().is_empty() {
            return plan_err!("table_name cannot be empty");
        }

        let schema = table_source.schema();
        let func_dependencies = FunctionalDependencies::new_from_constraints(
            table_source.constraints(),
            schema.fields.len(),
        );

        let projected_schema = projection
            .as_ref()
            .map(|p| {
                let projected_func_dependencies =
                    func_dependencies.project_functional_dependencies(p, p.len());
                DFSchema::new_with_metadata(
                    p.iter()
                        .map(|i| {
                            DFField::from_qualified(
                                table_name.clone(),
                                schema.field(*i).clone(),
                            )
                        })
                        .collect(),
                    schema.metadata().clone(),
                )
                .map(|df_schema| {
                    df_schema.with_functional_dependencies(projected_func_dependencies)
                })
            })
            .unwrap_or_else(|| {
                DFSchema::try_from_qualified_schema(table_name.clone(), &schema).map(
                    |df_schema| df_schema.with_functional_dependencies(func_dependencies),
                )
            })?;

        let table_scan = LogicalPlan::TableScan(TableScan {
            table_name,
            source: table_source,
            projected_schema: Arc::new(projected_schema),
            projection,
            filters,
            fetch: None,
        });
        Ok(Self::from(table_scan))
    }

    /// Wrap a plan in a window
    pub fn window_plan(
        input: LogicalPlan,
        window_exprs: Vec<Expr>,
    ) -> Result<LogicalPlan> {
        let mut plan = input;
        let mut groups = group_window_expr_by_sort_keys(&window_exprs)?;
        // To align with the behavior of PostgreSQL, we want the sort_keys sorted as same rule as PostgreSQL that first
        // we compare the sort key themselves and if one window's sort keys are a prefix of another
        // put the window with more sort keys first. so more deeply sorted plans gets nested further down as children.
        // The sort_by() implementation here is a stable sort.
        // Note that by this rule if there's an empty over, it'll be at the top level
        groups.sort_by(|(key_a, _), (key_b, _)| {
            for ((first, _), (second, _)) in key_a.iter().zip(key_b.iter()) {
                let key_ordering = compare_sort_expr(first, second, plan.schema());
                match key_ordering {
                    Ordering::Less => {
                        return Ordering::Less;
                    }
                    Ordering::Greater => {
                        return Ordering::Greater;
                    }
                    Ordering::Equal => {}
                }
            }
            key_b.len().cmp(&key_a.len())
        });
        for (_, exprs) in groups {
            let window_exprs = exprs.into_iter().cloned().collect::<Vec<_>>();
            // Partition and sorting is done at physical level, see the EnforceDistribution
            // and EnforceSorting rules.
            plan = LogicalPlanBuilder::from(plan)
                .window(window_exprs)?
                .build()?;
        }
        Ok(plan)
    }
    /// Apply a projection without alias.
    pub fn project(
        self,
        expr: impl IntoIterator<Item = impl Into<Expr>>,
    ) -> Result<Self> {
        Ok(Self::from(project(self.plan, expr)?))
    }

    /// Select the given column indices
    pub fn select(self, indices: impl IntoIterator<Item = usize>) -> Result<Self> {
        let fields = self.plan.schema().fields();
        let exprs: Vec<_> = indices
            .into_iter()
            .map(|x| Expr::Column(fields[x].qualified_column()))
            .collect();
        self.project(exprs)
    }

    /// Apply a filter
    pub fn filter(self, expr: impl Into<Expr>) -> Result<Self> {
        let expr = normalize_col(expr.into(), &self.plan)?;
        Ok(Self::from(LogicalPlan::Filter(Filter::try_new(
            expr,
            Arc::new(self.plan),
        )?)))
    }

    /// Make a builder for a prepare logical plan from the builder's plan
    pub fn prepare(self, name: String, data_types: Vec<DataType>) -> Result<Self> {
        Ok(Self::from(LogicalPlan::Prepare(Prepare {
            name,
            data_types,
            input: Arc::new(self.plan),
        })))
    }

    /// Limit the number of rows returned
    ///
    /// `skip` - Number of rows to skip before fetch any row.
    ///
    /// `fetch` - Maximum number of rows to fetch, after skipping `skip` rows,
    ///          if specified.
    pub fn limit(self, skip: usize, fetch: Option<usize>) -> Result<Self> {
        Ok(Self::from(LogicalPlan::Limit(Limit {
            skip,
            fetch,
            input: Arc::new(self.plan),
        })))
    }

    /// Apply an alias
    pub fn alias(self, alias: impl Into<OwnedTableReference>) -> Result<Self> {
        Ok(Self::from(subquery_alias(self.plan, alias)?))
    }

    /// Add missing sort columns to all downstream projection
    ///
    /// Thus, if you have a LogialPlan that selects A and B and have
    /// not requested a sort by C, this code will add C recursively to
    /// all input projections.
    ///
    /// Adding a new column is not correct if there is a `Distinct`
    /// node, which produces only distinct values of its
    /// inputs. Adding a new column to its input will result in
    /// potententially different results than with the original column.
    ///
    /// For example, if the input is like:
    ///
    /// Distinct(A, B)
    ///
    /// If the input looks like
    ///
    /// a | b | c
    /// --+---+---
    /// 1 | 2 | 3
    /// 1 | 2 | 4
    ///
    /// Distinct (A, B) --> (1,2)
    ///
    /// But Distinct (A, B, C) --> (1, 2, 3), (1, 2, 4)
    ///  (which will appear as a (1, 2), (1, 2) if a and b are projected
    ///
    /// See <https://github.com/apache/arrow-datafusion/issues/5065> for more details
    fn add_missing_columns(
        curr_plan: LogicalPlan,
        missing_cols: &[Column],
        is_distinct: bool,
    ) -> Result<LogicalPlan> {
        match curr_plan {
            LogicalPlan::Projection(Projection {
                input,
                mut expr,
                schema: _,
            }) if missing_cols.iter().all(|c| input.schema().has_column(c)) => {
                let mut missing_exprs = missing_cols
                    .iter()
                    .map(|c| normalize_col(Expr::Column(c.clone()), &input))
                    .collect::<Result<Vec<_>>>()?;

                // Do not let duplicate columns to be added, some of the
                // missing_cols may be already present but without the new
                // projected alias.
                missing_exprs.retain(|e| !expr.contains(e));
                if is_distinct {
                    Self::ambiguous_distinct_check(&missing_exprs, missing_cols, &expr)?;
                }
                expr.extend(missing_exprs);
                Ok(project((*input).clone(), expr)?)
            }
            _ => {
                let is_distinct =
                    is_distinct || matches!(curr_plan, LogicalPlan::Distinct(_));
                let new_inputs = curr_plan
                    .inputs()
                    .into_iter()
                    .map(|input_plan| {
                        Self::add_missing_columns(
                            (*input_plan).clone(),
                            missing_cols,
                            is_distinct,
                        )
                    })
                    .collect::<Result<Vec<_>>>()?;
                curr_plan.with_new_inputs(&new_inputs)
            }
        }
    }

    fn ambiguous_distinct_check(
        missing_exprs: &[Expr],
        missing_cols: &[Column],
        projection_exprs: &[Expr],
    ) -> Result<()> {
        if missing_exprs.is_empty() {
            return Ok(());
        }

        // if the missing columns are all only aliases for things in
        // the existing select list, it is ok
        //
        // This handles the special case for
        // SELECT col as <alias> ORDER BY <alias>
        //
        // As described in https://github.com/apache/arrow-datafusion/issues/5293
        let all_aliases = missing_exprs.iter().all(|e| {
            projection_exprs.iter().any(|proj_expr| {
                if let Expr::Alias(Alias { expr, .. }) = proj_expr {
                    e == expr.as_ref()
                } else {
                    false
                }
            })
        });
        if all_aliases {
            return Ok(());
        }

        let missing_col_names = missing_cols
            .iter()
            .map(|col| col.flat_name())
            .collect::<String>();

        plan_err!("For SELECT DISTINCT, ORDER BY expressions {missing_col_names} must appear in select list")
    }

    /// Apply a sort
    pub fn sort(
        self,
        exprs: impl IntoIterator<Item = impl Into<Expr>> + Clone,
    ) -> Result<Self> {
        let exprs = rewrite_sort_cols_by_aggs(exprs, &self.plan)?;

        let schema = self.plan.schema();

        // Collect sort columns that are missing in the input plan's schema
        let mut missing_cols: Vec<Column> = vec![];
        exprs
            .clone()
            .into_iter()
            .try_for_each::<_, Result<()>>(|expr| {
                let columns = expr.to_columns()?;

                columns.into_iter().for_each(|c| {
                    if schema.field_from_column(&c).is_err() {
                        missing_cols.push(c);
                    }
                });

                Ok(())
            })?;

        if missing_cols.is_empty() {
            return Ok(Self::from(LogicalPlan::Sort(Sort {
                expr: normalize_cols(exprs, &self.plan)?,
                input: Arc::new(self.plan),
                fetch: None,
            })));
        }

        // remove pushed down sort columns
        let new_expr = schema
            .fields()
            .iter()
            .map(|f| Expr::Column(f.qualified_column()))
            .collect();

        let is_distinct = false;
        let plan = Self::add_missing_columns(self.plan, &missing_cols, is_distinct)?;
        let sort_plan = LogicalPlan::Sort(Sort {
            expr: normalize_cols(exprs, &plan)?,
            input: Arc::new(plan),
            fetch: None,
        });

        Ok(Self::from(LogicalPlan::Projection(Projection::try_new(
            new_expr,
            Arc::new(sort_plan),
        )?)))
    }

    /// Apply a union, preserving duplicate rows
    pub fn union(self, plan: LogicalPlan) -> Result<Self> {
        Ok(Self::from(union(self.plan, plan)?))
    }

    /// Apply a union, removing duplicate rows
    pub fn union_distinct(self, plan: LogicalPlan) -> Result<Self> {
        let left_plan: LogicalPlan = self.plan;
        let right_plan: LogicalPlan = plan;

        Ok(Self::from(LogicalPlan::Distinct(Distinct {
            input: Arc::new(union(left_plan, right_plan)?),
        })))
    }

    /// Apply deduplication: Only distinct (different) values are returned)
    pub fn distinct(self) -> Result<Self> {
        Ok(Self::from(LogicalPlan::Distinct(Distinct {
            input: Arc::new(self.plan),
        })))
    }

    /// Apply a join with on constraint.
    ///
    /// Filter expression expected to contain non-equality predicates that can not be pushed
    /// down to any of join inputs.
    /// In case of outer join, filter applied to only matched rows.
    pub fn join(
        self,
        right: LogicalPlan,
        join_type: JoinType,
        join_keys: (Vec<impl Into<Column>>, Vec<impl Into<Column>>),
        filter: Option<Expr>,
    ) -> Result<Self> {
        self.join_detailed(right, join_type, join_keys, filter, false)
    }

    pub(crate) fn normalize(
        plan: &LogicalPlan,
        column: impl Into<Column> + Clone,
    ) -> Result<Column> {
        let schema = plan.schema();
        let fallback_schemas = plan.fallback_normalize_schemas();
        let using_columns = plan.using_columns()?;
        column.into().normalize_with_schemas_and_ambiguity_check(
            &[&[schema], &fallback_schemas],
            &using_columns,
        )
    }

    /// Apply a join with on constraint and specified null equality
    /// If null_equals_null is true then null == null, else null != null
    pub fn join_detailed(
        self,
        right: LogicalPlan,
        join_type: JoinType,
        join_keys: (Vec<impl Into<Column>>, Vec<impl Into<Column>>),
        filter: Option<Expr>,
        null_equals_null: bool,
    ) -> Result<Self> {
        if join_keys.0.len() != join_keys.1.len() {
            return plan_err!("left_keys and right_keys were not the same length");
        }

        let filter = if let Some(expr) = filter {
            let filter = normalize_col_with_schemas_and_ambiguity_check(
                expr,
                &[&[self.schema(), right.schema()]],
                &[],
            )?;
            Some(filter)
        } else {
            None
        };

        let (left_keys, right_keys): (Vec<Result<Column>>, Vec<Result<Column>>) =
            join_keys
                .0
                .into_iter()
                .zip(join_keys.1)
                .map(|(l, r)| {
                    let l = l.into();
                    let r = r.into();

                    match (&l.relation, &r.relation) {
                        (Some(lr), Some(rr)) => {
                            let l_is_left =
                                self.plan.schema().field_with_qualified_name(lr, &l.name);
                            let l_is_right =
                                right.schema().field_with_qualified_name(lr, &l.name);
                            let r_is_left =
                                self.plan.schema().field_with_qualified_name(rr, &r.name);
                            let r_is_right =
                                right.schema().field_with_qualified_name(rr, &r.name);

                            match (l_is_left, l_is_right, r_is_left, r_is_right) {
                                (_, Ok(_), Ok(_), _) => (Ok(r), Ok(l)),
                                (Ok(_), _, _, Ok(_)) => (Ok(l), Ok(r)),
                                _ => (
                                    Self::normalize(&self.plan, l),
                                    Self::normalize(&right, r),
                                ),
                            }
                        }
                        (Some(lr), None) => {
                            let l_is_left =
                                self.plan.schema().field_with_qualified_name(lr, &l.name);
                            let l_is_right =
                                right.schema().field_with_qualified_name(lr, &l.name);

                            match (l_is_left, l_is_right) {
                                (Ok(_), _) => (Ok(l), Self::normalize(&right, r)),
                                (_, Ok(_)) => (Self::normalize(&self.plan, r), Ok(l)),
                                _ => (
                                    Self::normalize(&self.plan, l),
                                    Self::normalize(&right, r),
                                ),
                            }
                        }
                        (None, Some(rr)) => {
                            let r_is_left =
                                self.plan.schema().field_with_qualified_name(rr, &r.name);
                            let r_is_right =
                                right.schema().field_with_qualified_name(rr, &r.name);

                            match (r_is_left, r_is_right) {
                                (Ok(_), _) => (Ok(r), Self::normalize(&right, l)),
                                (_, Ok(_)) => (Self::normalize(&self.plan, l), Ok(r)),
                                _ => (
                                    Self::normalize(&self.plan, l),
                                    Self::normalize(&right, r),
                                ),
                            }
                        }
                        (None, None) => {
                            let mut swap = false;
                            let left_key = Self::normalize(&self.plan, l.clone())
                                .or_else(|_| {
                                    swap = true;
                                    Self::normalize(&right, l)
                                });
                            if swap {
                                (Self::normalize(&self.plan, r), left_key)
                            } else {
                                (left_key, Self::normalize(&right, r))
                            }
                        }
                    }
                })
                .unzip();

        let left_keys = left_keys.into_iter().collect::<Result<Vec<Column>>>()?;
        let right_keys = right_keys.into_iter().collect::<Result<Vec<Column>>>()?;

        let on = left_keys
            .into_iter()
            .zip(right_keys)
            .map(|(l, r)| (Expr::Column(l), Expr::Column(r)))
            .collect();
        let join_schema =
            build_join_schema(self.plan.schema(), right.schema(), &join_type)?;

        Ok(Self::from(LogicalPlan::Join(Join {
            left: Arc::new(self.plan),
            right: Arc::new(right),
            on,
            filter,
            join_type,
            join_constraint: JoinConstraint::On,
            schema: DFSchemaRef::new(join_schema),
            null_equals_null,
        })))
    }

    /// Apply a join with using constraint, which duplicates all join columns in output schema.
    pub fn join_using(
        self,
        right: LogicalPlan,
        join_type: JoinType,
        using_keys: Vec<impl Into<Column> + Clone>,
    ) -> Result<Self> {
        let left_keys: Vec<Column> = using_keys
            .clone()
            .into_iter()
            .map(|c| Self::normalize(&self.plan, c))
            .collect::<Result<_>>()?;
        let right_keys: Vec<Column> = using_keys
            .into_iter()
            .map(|c| Self::normalize(&right, c))
            .collect::<Result<_>>()?;

        let on: Vec<(_, _)> = left_keys.into_iter().zip(right_keys).collect();
        let join_schema =
            build_join_schema(self.plan.schema(), right.schema(), &join_type)?;
        let mut join_on: Vec<(Expr, Expr)> = vec![];
        let mut filters: Option<Expr> = None;
        for (l, r) in &on {
            if self.plan.schema().has_column(l)
                && right.schema().has_column(r)
                && can_hash(self.plan.schema().field_from_column(l)?.data_type())
            {
                join_on.push((Expr::Column(l.clone()), Expr::Column(r.clone())));
            } else if self.plan.schema().has_column(l)
                && right.schema().has_column(r)
                && can_hash(self.plan.schema().field_from_column(r)?.data_type())
            {
                join_on.push((Expr::Column(r.clone()), Expr::Column(l.clone())));
            } else {
                let expr = binary_expr(
                    Expr::Column(l.clone()),
                    Operator::Eq,
                    Expr::Column(r.clone()),
                );
                match filters {
                    None => filters = Some(expr),
                    Some(filter_expr) => filters = Some(and(expr, filter_expr)),
                }
            }
        }

        if join_on.is_empty() {
            let join = Self::from(self.plan).cross_join(right)?;
            join.filter(filters.ok_or_else(|| {
                DataFusionError::Internal("filters should not be None here".to_string())
            })?)
        } else {
            Ok(Self::from(LogicalPlan::Join(Join {
                left: Arc::new(self.plan),
                right: Arc::new(right),
                on: join_on,
                filter: filters,
                join_type,
                join_constraint: JoinConstraint::Using,
                schema: DFSchemaRef::new(join_schema),
                null_equals_null: false,
            })))
        }
    }

    /// Apply a cross join
    pub fn cross_join(self, right: LogicalPlan) -> Result<Self> {
        let join_schema =
            build_join_schema(self.plan.schema(), right.schema(), &JoinType::Inner)?;
        Ok(Self::from(LogicalPlan::CrossJoin(CrossJoin {
            left: Arc::new(self.plan),
            right: Arc::new(right),
            schema: DFSchemaRef::new(join_schema),
        })))
    }

    /// Repartition
    pub fn repartition(self, partitioning_scheme: Partitioning) -> Result<Self> {
        Ok(Self::from(LogicalPlan::Repartition(Repartition {
            input: Arc::new(self.plan),
            partitioning_scheme,
        })))
    }

    /// Apply a window functions to extend the schema
    pub fn window(
        self,
        window_expr: impl IntoIterator<Item = impl Into<Expr>>,
    ) -> Result<Self> {
        let window_expr = normalize_cols(window_expr, &self.plan)?;
        validate_unique_names("Windows", &window_expr)?;
        Ok(Self::from(LogicalPlan::Window(Window::try_new(
            window_expr,
            Arc::new(self.plan),
        )?)))
    }

    /// Apply an aggregate: grouping on the `group_expr` expressions
    /// and calculating `aggr_expr` aggregates for each distinct
    /// value of the `group_expr`;
    pub fn aggregate(
        self,
        group_expr: impl IntoIterator<Item = impl Into<Expr>>,
        aggr_expr: impl IntoIterator<Item = impl Into<Expr>>,
    ) -> Result<Self> {
        let group_expr = normalize_cols(group_expr, &self.plan)?;
        let aggr_expr = normalize_cols(aggr_expr, &self.plan)?;
        Ok(Self::from(LogicalPlan::Aggregate(Aggregate::try_new(
            Arc::new(self.plan),
            group_expr,
            aggr_expr,
        )?)))
    }

    /// Create an expression to represent the explanation of the plan
    ///
    /// if `analyze` is true, runs the actual plan and produces
    /// information about metrics during run.
    ///
    /// if `verbose` is true, prints out additional details.
    pub fn explain(self, verbose: bool, analyze: bool) -> Result<Self> {
        let schema = LogicalPlan::explain_schema();
        let schema = schema.to_dfschema_ref()?;

        if analyze {
            Ok(Self::from(LogicalPlan::Analyze(Analyze {
                verbose,
                input: Arc::new(self.plan),
                schema,
            })))
        } else {
            let stringified_plans =
                vec![self.plan.to_stringified(PlanType::InitialLogicalPlan)];

            Ok(Self::from(LogicalPlan::Explain(Explain {
                verbose,
                plan: Arc::new(self.plan),
                stringified_plans,
                schema,
                logical_optimization_succeeded: false,
            })))
        }
    }

    /// Process intersect set operator
    pub fn intersect(
        left_plan: LogicalPlan,
        right_plan: LogicalPlan,
        is_all: bool,
    ) -> Result<LogicalPlan> {
        LogicalPlanBuilder::intersect_or_except(
            left_plan,
            right_plan,
            JoinType::LeftSemi,
            is_all,
        )
    }

    /// Process except set operator
    pub fn except(
        left_plan: LogicalPlan,
        right_plan: LogicalPlan,
        is_all: bool,
    ) -> Result<LogicalPlan> {
        LogicalPlanBuilder::intersect_or_except(
            left_plan,
            right_plan,
            JoinType::LeftAnti,
            is_all,
        )
    }

    /// Process intersect or except
    fn intersect_or_except(
        left_plan: LogicalPlan,
        right_plan: LogicalPlan,
        join_type: JoinType,
        is_all: bool,
    ) -> Result<LogicalPlan> {
        let left_len = left_plan.schema().fields().len();
        let right_len = right_plan.schema().fields().len();

        if left_len != right_len {
            return plan_err!(
                "INTERSECT/EXCEPT query must have the same number of columns. Left is {left_len} and right is {right_len}."
            );
        }

        let join_keys = left_plan
            .schema()
            .fields()
            .iter()
            .zip(right_plan.schema().fields().iter())
            .map(|(left_field, right_field)| {
                (
                    (Column::from_name(left_field.name())),
                    (Column::from_name(right_field.name())),
                )
            })
            .unzip();
        if is_all {
            LogicalPlanBuilder::from(left_plan)
                .join_detailed(right_plan, join_type, join_keys, None, true)?
                .build()
        } else {
            LogicalPlanBuilder::from(left_plan)
                .distinct()?
                .join_detailed(right_plan, join_type, join_keys, None, true)?
                .build()
        }
    }

    /// Build the plan
    pub fn build(self) -> Result<LogicalPlan> {
        Ok(self.plan)
    }

    /// Apply a join with the expression on constraint.
    ///
    /// equi_exprs are "equijoin" predicates expressions on the existing and right inputs, respectively.
    ///
    /// filter: any other filter expression to apply during the join. equi_exprs predicates are likely
    /// to be evaluated more quickly than the filter expressions
    pub fn join_with_expr_keys(
        self,
        right: LogicalPlan,
        join_type: JoinType,
        equi_exprs: (Vec<impl Into<Expr>>, Vec<impl Into<Expr>>),
        filter: Option<Expr>,
    ) -> Result<Self> {
        if equi_exprs.0.len() != equi_exprs.1.len() {
            return plan_err!("left_keys and right_keys were not the same length");
        }

        let join_key_pairs = equi_exprs
            .0
            .into_iter()
            .zip(equi_exprs.1.into_iter())
            .map(|(l, r)| {
                let left_key = l.into();
                let right_key = r.into();

                let left_using_columns = left_key.to_columns()?;
                let normalized_left_key = normalize_col_with_schemas_and_ambiguity_check(
                    left_key,
                    &[&[self.plan.schema(), right.schema()]],
                    &[left_using_columns],
                )?;

                let right_using_columns = right_key.to_columns()?;
                let normalized_right_key = normalize_col_with_schemas_and_ambiguity_check(
                    right_key,
                    &[&[self.plan.schema(), right.schema()]],
                    &[right_using_columns],
                )?;

                // find valid equijoin
                find_valid_equijoin_key_pair(
                        &normalized_left_key,
                        &normalized_right_key,
                        self.plan.schema().clone(),
                        right.schema().clone(),
                    )?.ok_or_else(||
                        DataFusionError::Plan(format!(
                            "can't create join plan, join key should belong to one input, error key: ({normalized_left_key},{normalized_right_key})"
                        )))
            })
            .collect::<Result<Vec<_>>>()?;

        let join_schema =
            build_join_schema(self.plan.schema(), right.schema(), &join_type)?;

        Ok(Self::from(LogicalPlan::Join(Join {
            left: Arc::new(self.plan),
            right: Arc::new(right),
            on: join_key_pairs,
            filter,
            join_type,
            join_constraint: JoinConstraint::On,
            schema: DFSchemaRef::new(join_schema),
            null_equals_null: false,
        })))
    }

    /// Unnest the given column.
    pub fn unnest_column(self, column: impl Into<Column>) -> Result<Self> {
        Ok(Self::from(unnest(self.plan, column.into())?))
    }

    /// Unnest the given column given [`UnnestOptions`]
    pub fn unnest_column_with_options(
        self,
        column: impl Into<Column>,
        options: UnnestOptions,
    ) -> Result<Self> {
        Ok(Self::from(unnest_with_options(
            self.plan,
            column.into(),
            options,
        )?))
    }
}

/// Creates a schema for a join operation.
/// The fields from the left side are first
pub fn build_join_schema(
    left: &DFSchema,
    right: &DFSchema,
    join_type: &JoinType,
) -> Result<DFSchema> {
    fn nullify_fields(fields: &[DFField]) -> Vec<DFField> {
        fields
            .iter()
            .map(|f| f.clone().with_nullable(true))
            .collect()
    }

    let right_fields = right.fields();
    let left_fields = left.fields();

    let fields: Vec<DFField> = match join_type {
        JoinType::Inner => {
            // left then right
            left_fields
                .iter()
                .chain(right_fields.iter())
                .cloned()
                .collect()
        }
        JoinType::Left => {
            // left then right, right set to nullable in case of not matched scenario
            left_fields
                .iter()
                .chain(&nullify_fields(right_fields))
                .cloned()
                .collect()
        }
        JoinType::Right => {
            // left then right, left set to nullable in case of not matched scenario
            nullify_fields(left_fields)
                .iter()
                .chain(right_fields.iter())
                .cloned()
                .collect()
        }
        JoinType::Full => {
            // left then right, all set to nullable in case of not matched scenario
            nullify_fields(left_fields)
                .iter()
                .chain(&nullify_fields(right_fields))
                .cloned()
                .collect()
        }
        JoinType::LeftSemi | JoinType::LeftAnti => {
            // Only use the left side for the schema
            left_fields.clone()
        }
        JoinType::RightSemi | JoinType::RightAnti => {
            // Only use the right side for the schema
            right_fields.clone()
        }
    };
    let func_dependencies = left.functional_dependencies().join(
        right.functional_dependencies(),
        join_type,
        left_fields.len(),
    );
    let mut metadata = left.metadata().clone();
    metadata.extend(right.metadata().clone());
    Ok(DFSchema::new_with_metadata(fields, metadata)?
        .with_functional_dependencies(func_dependencies))
}

/// Errors if one or more expressions have equal names.
pub(crate) fn validate_unique_names<'a>(
    node_name: &str,
    expressions: impl IntoIterator<Item = &'a Expr>,
) -> Result<()> {
    let mut unique_names = HashMap::new();
    expressions.into_iter().enumerate().try_for_each(|(position, expr)| {
        let name = expr.display_name()?;
        match unique_names.get(&name) {
            None => {
                unique_names.insert(name, (position, expr));
                Ok(())
            },
            Some((existing_position, existing_expr)) => {
                plan_err!("{node_name} require unique expression names \
                             but the expression \"{existing_expr}\" at position {existing_position} and \"{expr}\" \
                             at position {position} have the same name. Consider aliasing (\"AS\") one of them."
                            )
            }
        }
    })
}

pub fn project_with_column_index(
    expr: Vec<Expr>,
    input: Arc<LogicalPlan>,
    schema: DFSchemaRef,
) -> Result<LogicalPlan> {
    let alias_expr = expr
        .into_iter()
        .enumerate()
        .map(|(i, e)| match e {
            Expr::Alias(Alias { ref name, .. }) if name != schema.field(i).name() => {
                e.unalias().alias(schema.field(i).name())
            }
            Expr::Column(Column {
                relation: _,
                ref name,
            }) if name != schema.field(i).name() => e.alias(schema.field(i).name()),
            Expr::Alias { .. } | Expr::Column { .. } => e,
            _ => e.alias(schema.field(i).name()),
        })
        .collect::<Vec<_>>();

    Ok(LogicalPlan::Projection(Projection::try_new_with_schema(
        alias_expr, input, schema,
    )?))
}

/// Union two logical plans.
pub fn union(left_plan: LogicalPlan, right_plan: LogicalPlan) -> Result<LogicalPlan> {
    let left_col_num = left_plan.schema().fields().len();

    // check union plan length same.
    let right_col_num = right_plan.schema().fields().len();
    if right_col_num != left_col_num {
        return plan_err!(
            "Union queries must have the same number of columns, (left is {left_col_num}, right is {right_col_num})");
    }

    // create union schema
    let union_schema = (0..left_col_num)
        .map(|i| {
            let left_field = left_plan.schema().field(i);
            let right_field = right_plan.schema().field(i);
            let nullable = left_field.is_nullable() || right_field.is_nullable();
            let data_type =
                comparison_coercion(left_field.data_type(), right_field.data_type())
                    .ok_or_else(|| {
                        DataFusionError::Plan(format!(
                    "UNION Column {} (type: {}) is not compatible with column {} (type: {})",
                    right_field.name(),
                    right_field.data_type(),
                    left_field.name(),
                    left_field.data_type()
                ))
                    })?;

            Ok(DFField::new(
                left_field.qualifier().cloned(),
                left_field.name(),
                data_type,
                nullable,
            ))
        })
        .collect::<Result<Vec<_>>>()?
        .to_dfschema()?;

    let inputs = vec![left_plan, right_plan]
        .into_iter()
        .flat_map(|p| match p {
            LogicalPlan::Union(Union { inputs, .. }) => inputs,
            other_plan => vec![Arc::new(other_plan)],
        })
        .map(|p| {
            let plan = coerce_plan_expr_for_schema(&p, &union_schema)?;
            match plan {
                LogicalPlan::Projection(Projection { expr, input, .. }) => {
                    Ok(Arc::new(project_with_column_index(
                        expr,
                        input,
                        Arc::new(union_schema.clone()),
                    )?))
                }
                other_plan => Ok(Arc::new(other_plan)),
            }
        })
        .collect::<Result<Vec<_>>>()?;

    if inputs.is_empty() {
        return plan_err!("Empty UNION");
    }

    Ok(LogicalPlan::Union(Union {
        inputs,
        schema: Arc::new(union_schema),
    }))
}

/// Create Projection
/// # Errors
/// This function errors under any of the following conditions:
/// * Two or more expressions have the same name
/// * An invalid expression is used (e.g. a `sort` expression)
pub fn project(
    plan: LogicalPlan,
    expr: impl IntoIterator<Item = impl Into<Expr>>,
) -> Result<LogicalPlan> {
    // TODO: move it into analyzer
    let input_schema = plan.schema();
    let mut projected_expr = vec![];
    for e in expr {
        let e = e.into();
        match e {
            Expr::Wildcard => {
                projected_expr.extend(expand_wildcard(input_schema, &plan, None)?)
            }
            Expr::QualifiedWildcard { ref qualifier } => projected_expr
                .extend(expand_qualified_wildcard(qualifier, input_schema, None)?),
            _ => projected_expr
                .push(columnize_expr(normalize_col(e, &plan)?, input_schema)),
        }
    }
    validate_unique_names("Projections", projected_expr.iter())?;

    Ok(LogicalPlan::Projection(Projection::try_new(
        projected_expr,
        Arc::new(plan.clone()),
    )?))
}

/// Create a SubqueryAlias to wrap a LogicalPlan.
pub fn subquery_alias(
    plan: LogicalPlan,
    alias: impl Into<OwnedTableReference>,
) -> Result<LogicalPlan> {
    Ok(LogicalPlan::SubqueryAlias(SubqueryAlias::try_new(
        plan, alias,
    )?))
}

/// Create a LogicalPlanBuilder representing a scan of a table with the provided name and schema.
/// This is mostly used for testing and documentation.
pub fn table_scan<'a>(
    name: Option<impl Into<TableReference<'a>>>,
    table_schema: &Schema,
    projection: Option<Vec<usize>>,
) -> Result<LogicalPlanBuilder> {
    table_scan_with_filters(name, table_schema, projection, vec![])
}

/// Create a LogicalPlanBuilder representing a scan of a table with the provided name and schema,
/// and inlined filters.
/// This is mostly used for testing and documentation.
pub fn table_scan_with_filters<'a>(
    name: Option<impl Into<TableReference<'a>>>,
    table_schema: &Schema,
    projection: Option<Vec<usize>>,
    filters: Vec<Expr>,
) -> Result<LogicalPlanBuilder> {
    let table_source = table_source(table_schema);
    let name = name
        .map(|n| n.into())
        .unwrap_or_else(|| OwnedTableReference::bare(UNNAMED_TABLE))
        .to_owned_reference();
    LogicalPlanBuilder::scan_with_filters(name, table_source, projection, filters)
}

fn table_source(table_schema: &Schema) -> Arc<dyn TableSource> {
    let table_schema = Arc::new(table_schema.clone());
    Arc::new(LogicalTableSource { table_schema })
}

/// Wrap projection for a plan, if the join keys contains normal expression.
pub fn wrap_projection_for_join_if_necessary(
    join_keys: &[Expr],
    input: LogicalPlan,
) -> Result<(LogicalPlan, Vec<Column>, bool)> {
    let input_schema = input.schema();
    let alias_join_keys: Vec<Expr> = join_keys
        .iter()
        .map(|key| {
            // The display_name() of cast expression will ignore the cast info, and show the inner expression name.
            // If we do not add alais, it will throw same field name error in the schema when adding projection.
            // For example:
            //    input scan : [a, b, c],
            //    join keys: [cast(a as int)]
            //
            //  then a and cast(a as int) will use the same field name - `a` in projection schema.
            //  https://github.com/apache/arrow-datafusion/issues/4478
            if matches!(key, Expr::Cast(_)) || matches!(key, Expr::TryCast(_)) {
                let alias = format!("{key}");
                key.clone().alias(alias)
            } else {
                key.clone()
            }
        })
        .collect::<Vec<_>>();

    let need_project = join_keys.iter().any(|key| !matches!(key, Expr::Column(_)));
    let plan = if need_project {
        let mut projection = expand_wildcard(input_schema, &input, None)?;
        let join_key_items = alias_join_keys
            .iter()
            .flat_map(|expr| expr.try_into_col().is_err().then_some(expr))
            .cloned()
            .collect::<HashSet<Expr>>();
        projection.extend(join_key_items);

        LogicalPlanBuilder::from(input)
            .project(projection)?
            .build()?
    } else {
        input
    };

    let join_on = alias_join_keys
        .into_iter()
        .map(|key| {
            key.try_into_col()
                .or_else(|_| Ok(Column::from_name(key.display_name()?)))
        })
        .collect::<Result<Vec<_>>>()?;

    Ok((plan, join_on, need_project))
}

/// Basic TableSource implementation intended for use in tests and documentation. It is expected
/// that users will provide their own TableSource implementations or use DataFusion's
/// DefaultTableSource.
pub struct LogicalTableSource {
    table_schema: SchemaRef,
}

impl LogicalTableSource {
    /// Create a new LogicalTableSource
    pub fn new(table_schema: SchemaRef) -> Self {
        Self { table_schema }
    }
}

impl TableSource for LogicalTableSource {
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn schema(&self) -> SchemaRef {
        self.table_schema.clone()
    }
}

/// Create a [`LogicalPlan::Unnest`] plan
pub fn unnest(input: LogicalPlan, column: Column) -> Result<LogicalPlan> {
    unnest_with_options(input, column, UnnestOptions::new())
}

/// Create a [`LogicalPlan::Unnest`] plan with options
pub fn unnest_with_options(
    input: LogicalPlan,
    column: Column,
    options: UnnestOptions,
) -> Result<LogicalPlan> {
    let unnest_field = input.schema().field_from_column(&column)?;

    // Extract the type of the nested field in the list.
    let unnested_field = match unnest_field.data_type() {
        DataType::List(field)
        | DataType::FixedSizeList(field, _)
        | DataType::LargeList(field) => DFField::new(
            unnest_field.qualifier().cloned(),
            unnest_field.name(),
            field.data_type().clone(),
            unnest_field.is_nullable(),
        ),
        _ => {
            // If the unnest field is not a list type return the input plan.
            return Ok(input);
        }
    };

    // Update the schema with the unnest column type changed to contain the nested type.
    let input_schema = input.schema();
    let fields = input_schema
        .fields()
        .iter()
        .map(|f| {
            if f == unnest_field {
                unnested_field.clone()
            } else {
                f.clone()
            }
        })
        .collect::<Vec<_>>();

    let schema = Arc::new(
        DFSchema::new_with_metadata(fields, input_schema.metadata().clone())?
            // We can use the existing functional dependencies:
            .with_functional_dependencies(input_schema.functional_dependencies().clone()),
    );

    Ok(LogicalPlan::Unnest(Unnest {
        input: Arc::new(input),
        column: unnested_field.qualified_column(),
        schema,
        options,
    }))
}

#[cfg(test)]
mod tests {
    use crate::logical_plan::StringifiedPlan;
    use crate::{col, in_subquery, lit, scalar_subquery, sum};
    use crate::{expr, expr_fn::exists};

    use super::*;

    use arrow::datatypes::{DataType, Field};
    use datafusion_common::{
        FunctionalDependence, OwnedTableReference, SchemaError, TableReference,
    };

    #[test]
    fn plan_builder_simple() -> Result<()> {
        let plan =
            table_scan(Some("employee_csv"), &employee_schema(), Some(vec![0, 3]))?
                .filter(col("state").eq(lit("CO")))?
                .project(vec![col("id")])?
                .build()?;

        let expected = "Projection: employee_csv.id\
        \n  Filter: employee_csv.state = Utf8(\"CO\")\
        \n    TableScan: employee_csv projection=[id, state]";

        assert_eq!(expected, format!("{plan:?}"));

        Ok(())
    }

    #[test]
    fn plan_builder_schema() {
        let schema = employee_schema();
        let projection = None;
        let plan =
            LogicalPlanBuilder::scan("employee_csv", table_source(&schema), projection)
                .unwrap();
        let expected = DFSchema::try_from_qualified_schema(
            TableReference::bare("employee_csv"),
            &schema,
        )
        .unwrap();
        assert_eq!(&expected, plan.schema().as_ref());

        // Note scan of "EMPLOYEE_CSV" is treated as a SQL identifer
        // (and thus normalized to "employee"csv") as well
        let projection = None;
        let plan =
            LogicalPlanBuilder::scan("EMPLOYEE_CSV", table_source(&schema), projection)
                .unwrap();
        assert_eq!(&expected, plan.schema().as_ref());
    }

    #[test]
    fn plan_builder_empty_name() {
        let schema = employee_schema();
        let projection = None;
        let err =
            LogicalPlanBuilder::scan("", table_source(&schema), projection).unwrap_err();
        assert_eq!(
            err.strip_backtrace(),
            "Error during planning: table_name cannot be empty"
        );
    }

    #[test]
    fn plan_builder_aggregate() -> Result<()> {
        let plan =
            table_scan(Some("employee_csv"), &employee_schema(), Some(vec![3, 4]))?
                .aggregate(
                    vec![col("state")],
                    vec![sum(col("salary")).alias("total_salary")],
                )?
                .project(vec![col("state"), col("total_salary")])?
                .limit(2, Some(10))?
                .build()?;

        let expected = "Limit: skip=2, fetch=10\
                \n  Projection: employee_csv.state, total_salary\
                \n    Aggregate: groupBy=[[employee_csv.state]], aggr=[[SUM(employee_csv.salary) AS total_salary]]\
                \n      TableScan: employee_csv projection=[state, salary]";

        assert_eq!(expected, format!("{plan:?}"));

        Ok(())
    }

    #[test]
    fn plan_builder_sort() -> Result<()> {
        let plan =
            table_scan(Some("employee_csv"), &employee_schema(), Some(vec![3, 4]))?
                .sort(vec![
                    Expr::Sort(expr::Sort::new(Box::new(col("state")), true, true)),
                    Expr::Sort(expr::Sort::new(Box::new(col("salary")), false, false)),
                ])?
                .build()?;

        let expected = "Sort: employee_csv.state ASC NULLS FIRST, employee_csv.salary DESC NULLS LAST\
        \n  TableScan: employee_csv projection=[state, salary]";

        assert_eq!(expected, format!("{plan:?}"));

        Ok(())
    }

    #[test]
    fn plan_using_join_wildcard_projection() -> Result<()> {
        let t2 = table_scan(Some("t2"), &employee_schema(), None)?.build()?;

        let plan = table_scan(Some("t1"), &employee_schema(), None)?
            .join_using(t2, JoinType::Inner, vec!["id"])?
            .project(vec![Expr::Wildcard])?
            .build()?;

        // id column should only show up once in projection
        let expected = "Projection: t1.id, t1.first_name, t1.last_name, t1.state, t1.salary, t2.first_name, t2.last_name, t2.state, t2.salary\
        \n  Inner Join: Using t1.id = t2.id\
        \n    TableScan: t1\
        \n    TableScan: t2";

        assert_eq!(expected, format!("{plan:?}"));

        Ok(())
    }

    #[test]
    fn plan_builder_union_combined_single_union() -> Result<()> {
        let plan =
            table_scan(Some("employee_csv"), &employee_schema(), Some(vec![3, 4]))?;

        let plan = plan
            .clone()
            .union(plan.clone().build()?)?
            .union(plan.clone().build()?)?
            .union(plan.build()?)?
            .build()?;

        // output has only one union
        let expected = "Union\
        \n  TableScan: employee_csv projection=[state, salary]\
        \n  TableScan: employee_csv projection=[state, salary]\
        \n  TableScan: employee_csv projection=[state, salary]\
        \n  TableScan: employee_csv projection=[state, salary]";

        assert_eq!(expected, format!("{plan:?}"));

        Ok(())
    }

    #[test]
    fn plan_builder_union_distinct_combined_single_union() -> Result<()> {
        let plan =
            table_scan(Some("employee_csv"), &employee_schema(), Some(vec![3, 4]))?;

        let plan = plan
            .clone()
            .union_distinct(plan.clone().build()?)?
            .union_distinct(plan.clone().build()?)?
            .union_distinct(plan.build()?)?
            .build()?;

        let expected = "\
        Distinct:\
        \n  Union\
        \n    Distinct:\
        \n      Union\
        \n        Distinct:\
        \n          Union\
        \n            TableScan: employee_csv projection=[state, salary]\
        \n            TableScan: employee_csv projection=[state, salary]\
        \n        TableScan: employee_csv projection=[state, salary]\
        \n    TableScan: employee_csv projection=[state, salary]";

        assert_eq!(expected, format!("{plan:?}"));

        Ok(())
    }

    #[test]
    fn plan_builder_union_different_num_columns_error() -> Result<()> {
        let plan1 =
            table_scan(TableReference::none(), &employee_schema(), Some(vec![3]))?;
        let plan2 =
            table_scan(TableReference::none(), &employee_schema(), Some(vec![3, 4]))?;

        let expected = "Error during planning: Union queries must have the same number of columns, (left is 1, right is 2)";
        let err_msg1 = plan1.clone().union(plan2.clone().build()?).unwrap_err();
        let err_msg2 = plan1.union_distinct(plan2.build()?).unwrap_err();

        assert_eq!(err_msg1.strip_backtrace(), expected);
        assert_eq!(err_msg2.strip_backtrace(), expected);

        Ok(())
    }

    #[test]
    fn plan_builder_simple_distinct() -> Result<()> {
        let plan =
            table_scan(Some("employee_csv"), &employee_schema(), Some(vec![0, 3]))?
                .filter(col("state").eq(lit("CO")))?
                .project(vec![col("id")])?
                .distinct()?
                .build()?;

        let expected = "\
        Distinct:\
        \n  Projection: employee_csv.id\
        \n    Filter: employee_csv.state = Utf8(\"CO\")\
        \n      TableScan: employee_csv projection=[id, state]";

        assert_eq!(expected, format!("{plan:?}"));

        Ok(())
    }

    #[test]
    fn exists_subquery() -> Result<()> {
        let foo = test_table_scan_with_name("foo")?;
        let bar = test_table_scan_with_name("bar")?;

        let subquery = LogicalPlanBuilder::from(foo)
            .project(vec![col("a")])?
            .filter(col("a").eq(col("bar.a")))?
            .build()?;

        let outer_query = LogicalPlanBuilder::from(bar)
            .project(vec![col("a")])?
            .filter(exists(Arc::new(subquery)))?
            .build()?;

        let expected = "Filter: EXISTS (<subquery>)\
        \n  Subquery:\
        \n    Filter: foo.a = bar.a\
        \n      Projection: foo.a\
        \n        TableScan: foo\
        \n  Projection: bar.a\
        \n    TableScan: bar";
        assert_eq!(expected, format!("{outer_query:?}"));

        Ok(())
    }

    #[test]
    fn filter_in_subquery() -> Result<()> {
        let foo = test_table_scan_with_name("foo")?;
        let bar = test_table_scan_with_name("bar")?;

        let subquery = LogicalPlanBuilder::from(foo)
            .project(vec![col("a")])?
            .filter(col("a").eq(col("bar.a")))?
            .build()?;

        // SELECT a FROM bar WHERE a IN (SELECT a FROM foo WHERE a = bar.a)
        let outer_query = LogicalPlanBuilder::from(bar)
            .project(vec![col("a")])?
            .filter(in_subquery(col("a"), Arc::new(subquery)))?
            .build()?;

        let expected = "Filter: bar.a IN (<subquery>)\
        \n  Subquery:\
        \n    Filter: foo.a = bar.a\
        \n      Projection: foo.a\
        \n        TableScan: foo\
        \n  Projection: bar.a\
        \n    TableScan: bar";
        assert_eq!(expected, format!("{outer_query:?}"));

        Ok(())
    }

    #[test]
    fn select_scalar_subquery() -> Result<()> {
        let foo = test_table_scan_with_name("foo")?;
        let bar = test_table_scan_with_name("bar")?;

        let subquery = LogicalPlanBuilder::from(foo)
            .project(vec![col("b")])?
            .filter(col("a").eq(col("bar.a")))?
            .build()?;

        // SELECT (SELECT a FROM foo WHERE a = bar.a) FROM bar
        let outer_query = LogicalPlanBuilder::from(bar)
            .project(vec![scalar_subquery(Arc::new(subquery))])?
            .build()?;

        let expected = "Projection: (<subquery>)\
        \n  Subquery:\
        \n    Filter: foo.a = bar.a\
        \n      Projection: foo.b\
        \n        TableScan: foo\
        \n  TableScan: bar";
        assert_eq!(expected, format!("{outer_query:?}"));

        Ok(())
    }

    #[test]
    fn projection_non_unique_names() -> Result<()> {
        let plan = table_scan(
            Some("employee_csv"),
            &employee_schema(),
            // project id and first_name by column index
            Some(vec![0, 1]),
        )?
        // two columns with the same name => error
        .project(vec![col("id"), col("first_name").alias("id")]);

        match plan {
            Err(DataFusionError::SchemaError(SchemaError::AmbiguousReference {
                field:
                    Column {
                        relation: Some(OwnedTableReference::Bare { table }),
                        name,
                    },
            })) => {
                assert_eq!("employee_csv", table);
                assert_eq!("id", &name);
                Ok(())
            }
            _ => plan_err!("Plan should have returned an DataFusionError::SchemaError"),
        }
    }

    #[test]
    fn aggregate_non_unique_names() -> Result<()> {
        let plan = table_scan(
            Some("employee_csv"),
            &employee_schema(),
            // project state and salary by column index
            Some(vec![3, 4]),
        )?
        // two columns with the same name => error
        .aggregate(vec![col("state")], vec![sum(col("salary")).alias("state")]);

        match plan {
            Err(DataFusionError::SchemaError(SchemaError::AmbiguousReference {
                field:
                    Column {
                        relation: Some(OwnedTableReference::Bare { table }),
                        name,
                    },
            })) => {
                assert_eq!("employee_csv", table);
                assert_eq!("state", &name);
                Ok(())
            }
            _ => plan_err!("Plan should have returned an DataFusionError::SchemaError"),
        }
    }

    fn employee_schema() -> Schema {
        Schema::new(vec![
            Field::new("id", DataType::Int32, false),
            Field::new("first_name", DataType::Utf8, false),
            Field::new("last_name", DataType::Utf8, false),
            Field::new("state", DataType::Utf8, false),
            Field::new("salary", DataType::Int32, false),
        ])
    }

    #[test]
    fn stringified_plan() {
        let stringified_plan =
            StringifiedPlan::new(PlanType::InitialLogicalPlan, "...the plan...");
        assert!(stringified_plan.should_display(true));
        assert!(!stringified_plan.should_display(false)); // not in non verbose mode

        let stringified_plan =
            StringifiedPlan::new(PlanType::FinalLogicalPlan, "...the plan...");
        assert!(stringified_plan.should_display(true));
        assert!(stringified_plan.should_display(false)); // display in non verbose mode too

        let stringified_plan =
            StringifiedPlan::new(PlanType::InitialPhysicalPlan, "...the plan...");
        assert!(stringified_plan.should_display(true));
        assert!(!stringified_plan.should_display(false)); // not in non verbose mode

        let stringified_plan =
            StringifiedPlan::new(PlanType::FinalPhysicalPlan, "...the plan...");
        assert!(stringified_plan.should_display(true));
        assert!(stringified_plan.should_display(false)); // display in non verbose mode

        let stringified_plan = StringifiedPlan::new(
            PlanType::OptimizedLogicalPlan {
                optimizer_name: "random opt pass".into(),
            },
            "...the plan...",
        );
        assert!(stringified_plan.should_display(true));
        assert!(!stringified_plan.should_display(false));
    }

    fn test_table_scan_with_name(name: &str) -> Result<LogicalPlan> {
        let schema = Schema::new(vec![
            Field::new("a", DataType::UInt32, false),
            Field::new("b", DataType::UInt32, false),
            Field::new("c", DataType::UInt32, false),
        ]);
        table_scan(Some(name), &schema, None)?.build()
    }

    #[test]
    fn plan_builder_intersect_different_num_columns_error() -> Result<()> {
        let plan1 =
            table_scan(TableReference::none(), &employee_schema(), Some(vec![3]))?;
        let plan2 =
            table_scan(TableReference::none(), &employee_schema(), Some(vec![3, 4]))?;

        let expected = "Error during planning: INTERSECT/EXCEPT query must have the same number of columns. \
         Left is 1 and right is 2.";
        let err_msg1 =
            LogicalPlanBuilder::intersect(plan1.build()?, plan2.build()?, true)
                .unwrap_err();

        assert_eq!(err_msg1.strip_backtrace(), expected);

        Ok(())
    }

    #[test]
    fn plan_builder_unnest() -> Result<()> {
        // Unnesting a simple column should return the child plan.
        let plan = nested_table_scan("test_table")?
            .unnest_column("scalar")?
            .build()?;

        let expected = "TableScan: test_table";
        assert_eq!(expected, format!("{plan:?}"));

        // Unnesting the strings list.
        let plan = nested_table_scan("test_table")?
            .unnest_column("strings")?
            .build()?;

        let expected = "\
        Unnest: test_table.strings\
        \n  TableScan: test_table";
        assert_eq!(expected, format!("{plan:?}"));

        // Check unnested field is a scalar
        let field = plan
            .schema()
            .field_with_name(Some(&TableReference::bare("test_table")), "strings")
            .unwrap();
        assert_eq!(&DataType::Utf8, field.data_type());

        // Unnesting multiple fields.
        let plan = nested_table_scan("test_table")?
            .unnest_column("strings")?
            .unnest_column("structs")?
            .build()?;

        let expected = "\
        Unnest: test_table.structs\
        \n  Unnest: test_table.strings\
        \n    TableScan: test_table";
        assert_eq!(expected, format!("{plan:?}"));

        // Check unnested struct list field should be a struct.
        let field = plan
            .schema()
            .field_with_name(Some(&TableReference::bare("test_table")), "structs")
            .unwrap();
        assert!(matches!(field.data_type(), DataType::Struct(_)));

        // Unnesting missing column should fail.
        let plan = nested_table_scan("test_table")?.unnest_column("missing");
        assert!(plan.is_err());

        Ok(())
    }

    fn nested_table_scan(table_name: &str) -> Result<LogicalPlanBuilder> {
        // Create a schema with a scalar field, a list of strings, and a list of structs.
        let struct_field = Field::new_struct(
            "item",
            vec![
                Field::new("a", DataType::UInt32, false),
                Field::new("b", DataType::UInt32, false),
            ],
            false,
        );
        let string_field = Field::new("item", DataType::Utf8, false);
        let schema = Schema::new(vec![
            Field::new("scalar", DataType::UInt32, false),
            Field::new_list("strings", string_field, false),
            Field::new_list("structs", struct_field, false),
        ]);

        table_scan(Some(table_name), &schema, None)
    }

    #[test]
    fn test_union_after_join() -> Result<()> {
        let values = vec![vec![lit(1)]];

        let left = LogicalPlanBuilder::values(values.clone())?
            .alias("left")?
            .build()?;
        let right = LogicalPlanBuilder::values(values)?
            .alias("right")?
            .build()?;

        let join = LogicalPlanBuilder::from(left).cross_join(right)?.build()?;

        let _ = LogicalPlanBuilder::from(join.clone())
            .union(join)?
            .build()?;

        Ok(())
    }

    #[test]
    fn test_get_updated_id_keys() {
        let fund_dependencies =
            FunctionalDependencies::new(vec![FunctionalDependence::new(
                vec![1],
                vec![0, 1, 2],
                true,
            )]);
        let res = fund_dependencies.project_functional_dependencies(&[1, 2], 2);
        let expected = FunctionalDependencies::new(vec![FunctionalDependence::new(
            vec![0],
            vec![0, 1],
            true,
        )]);
        assert_eq!(res, expected);
    }
}