1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Logical Expressions: [`Expr`]
use std::collections::{HashMap, HashSet};
use std::fmt::{self, Display, Formatter, Write};
use std::hash::{Hash, Hasher};
use std::mem;
use std::str::FromStr;
use std::sync::Arc;
use crate::expr_fn::binary_expr;
use crate::logical_plan::Subquery;
use crate::utils::expr_to_columns;
use crate::{
built_in_window_function, udaf, BuiltInWindowFunction, ExprSchemable, Operator,
Signature, WindowFrame, WindowUDF,
};
use crate::{window_frame, Volatility};
use arrow::datatypes::{DataType, FieldRef};
use datafusion_common::tree_node::{
Transformed, TransformedResult, TreeNode, TreeNodeRecursion,
};
use datafusion_common::{
internal_err, not_impl_err, plan_err, Column, DFSchema, Result, ScalarValue,
TableReference,
};
use sqlparser::ast::NullTreatment;
/// Represents logical expressions such as `A + 1`, or `CAST(c1 AS int)`.
///
/// For example the expression `A + 1` will be represented as
///
///```text
/// BinaryExpr {
/// left: Expr::Column("A"),
/// op: Operator::Plus,
/// right: Expr::Literal(ScalarValue::Int32(Some(1)))
/// }
/// ```
///
/// # Creating Expressions
///
/// `Expr`s can be created directly, but it is often easier and less verbose to
/// use the fluent APIs in [`crate::expr_fn`] such as [`col`] and [`lit`], or
/// methods such as [`Expr::alias`], [`Expr::cast_to`], and [`Expr::Like`]).
///
/// See also [`ExprFunctionExt`] for creating aggregate and window functions.
///
/// [`ExprFunctionExt`]: crate::expr_fn::ExprFunctionExt
///
/// # Schema Access
///
/// See [`ExprSchemable::get_type`] to access the [`DataType`] and nullability
/// of an `Expr`.
///
/// # Visiting and Rewriting `Expr`s
///
/// The `Expr` struct implements the [`TreeNode`] trait for walking and
/// rewriting expressions. For example [`TreeNode::apply`] recursively visits an
/// `Expr` and [`TreeNode::transform`] can be used to rewrite an expression. See
/// the examples below and [`TreeNode`] for more information.
///
/// # Examples
///
/// ## Column references and literals
///
/// [`Expr::Column`] refer to the values of columns and are often created with
/// the [`col`] function. For example to create an expression `c1` referring to
/// column named "c1":
///
/// [`col`]: crate::expr_fn::col
///
/// ```
/// # use datafusion_common::Column;
/// # use datafusion_expr::{lit, col, Expr};
/// let expr = col("c1");
/// assert_eq!(expr, Expr::Column(Column::from_name("c1")));
/// ```
///
/// [`Expr::Literal`] refer to literal, or constant, values. These are created
/// with the [`lit`] function. For example to create an expression `42`:
///
/// [`lit`]: crate::lit
///
/// ```
/// # use datafusion_common::{Column, ScalarValue};
/// # use datafusion_expr::{lit, col, Expr};
/// // All literals are strongly typed in DataFusion. To make an `i64` 42:
/// let expr = lit(42i64);
/// assert_eq!(expr, Expr::Literal(ScalarValue::Int64(Some(42))));
/// // To make a (typed) NULL:
/// let expr = Expr::Literal(ScalarValue::Int64(None));
/// // to make an (untyped) NULL (the optimizer will coerce this to the correct type):
/// let expr = lit(ScalarValue::Null);
/// ```
///
/// ## Binary Expressions
///
/// Exprs implement traits that allow easy to understand construction of more
/// complex expressions. For example, to create `c1 + c2` to add columns "c1" and
/// "c2" together
///
/// ```
/// # use datafusion_expr::{lit, col, Operator, Expr};
/// // Use the `+` operator to add two columns together
/// let expr = col("c1") + col("c2");
/// assert!(matches!(expr, Expr::BinaryExpr { ..} ));
/// if let Expr::BinaryExpr(binary_expr) = expr {
/// assert_eq!(*binary_expr.left, col("c1"));
/// assert_eq!(*binary_expr.right, col("c2"));
/// assert_eq!(binary_expr.op, Operator::Plus);
/// }
/// ```
///
/// The expression `c1 = 42` to compares the value in column "c1" to the
/// literal value `42`:
///
/// ```
/// # use datafusion_common::ScalarValue;
/// # use datafusion_expr::{lit, col, Operator, Expr};
/// let expr = col("c1").eq(lit(42_i32));
/// assert!(matches!(expr, Expr::BinaryExpr { .. } ));
/// if let Expr::BinaryExpr(binary_expr) = expr {
/// assert_eq!(*binary_expr.left, col("c1"));
/// let scalar = ScalarValue::Int32(Some(42));
/// assert_eq!(*binary_expr.right, Expr::Literal(scalar));
/// assert_eq!(binary_expr.op, Operator::Eq);
/// }
/// ```
///
/// Here is how to implement the equivalent of `SELECT *` to select all
/// [`Expr::Column`] from a [`DFSchema`]'s columns:
///
/// ```
/// # use arrow::datatypes::{DataType, Field, Schema};
/// # use datafusion_common::{DFSchema, Column};
/// # use datafusion_expr::Expr;
/// // Create a schema c1(int, c2 float)
/// let arrow_schema = Schema::new(vec![
/// Field::new("c1", DataType::Int32, false),
/// Field::new("c2", DataType::Float64, false),
/// ]);
/// // DFSchema is a an Arrow schema with optional relation name
/// let df_schema = DFSchema::try_from_qualified_schema("t1", &arrow_schema)
/// .unwrap();
///
/// // Form Vec<Expr> with an expression for each column in the schema
/// let exprs: Vec<_> = df_schema.iter()
/// .map(Expr::from)
/// .collect();
///
/// assert_eq!(exprs, vec![
/// Expr::from(Column::from_qualified_name("t1.c1")),
/// Expr::from(Column::from_qualified_name("t1.c2")),
/// ]);
/// ```
///
/// # Visiting and Rewriting `Expr`s
///
/// Here is an example that finds all literals in an `Expr` tree:
/// ```
/// # use std::collections::{HashSet};
/// use datafusion_common::ScalarValue;
/// # use datafusion_expr::{col, Expr, lit};
/// use datafusion_common::tree_node::{TreeNode, TreeNodeRecursion};
/// // Expression a = 5 AND b = 6
/// let expr = col("a").eq(lit(5)) & col("b").eq(lit(6));
/// // find all literals in a HashMap
/// let mut scalars = HashSet::new();
/// // apply recursively visits all nodes in the expression tree
/// expr.apply(|e| {
/// if let Expr::Literal(scalar) = e {
/// scalars.insert(scalar);
/// }
/// // The return value controls whether to continue visiting the tree
/// Ok(TreeNodeRecursion::Continue)
/// }).unwrap();;
/// // All subtrees have been visited and literals found
/// assert_eq!(scalars.len(), 2);
/// assert!(scalars.contains(&ScalarValue::Int32(Some(5))));
/// assert!(scalars.contains(&ScalarValue::Int32(Some(6))));
/// ```
///
/// Rewrite an expression, replacing references to column "a" in an
/// to the literal `42`:
///
/// ```
/// # use datafusion_common::tree_node::{Transformed, TreeNode};
/// # use datafusion_expr::{col, Expr, lit};
/// // expression a = 5 AND b = 6
/// let expr = col("a").eq(lit(5)).and(col("b").eq(lit(6)));
/// // rewrite all references to column "a" to the literal 42
/// let rewritten = expr.transform(|e| {
/// if let Expr::Column(c) = &e {
/// if &c.name == "a" {
/// // return Transformed::yes to indicate the node was changed
/// return Ok(Transformed::yes(lit(42)))
/// }
/// }
/// // return Transformed::no to indicate the node was not changed
/// Ok(Transformed::no(e))
/// }).unwrap();
/// // The expression has been rewritten
/// assert!(rewritten.transformed);
/// // to 42 = 5 AND b = 6
/// assert_eq!(rewritten.data, lit(42).eq(lit(5)).and(col("b").eq(lit(6))));
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub enum Expr {
/// An expression with a specific name.
Alias(Alias),
/// A named reference to a qualified filed in a schema.
Column(Column),
/// A named reference to a variable in a registry.
ScalarVariable(DataType, Vec<String>),
/// A constant value.
Literal(ScalarValue),
/// A binary expression such as "age > 21"
BinaryExpr(BinaryExpr),
/// LIKE expression
Like(Like),
/// LIKE expression that uses regular expressions
SimilarTo(Like),
/// Negation of an expression. The expression's type must be a boolean to make sense.
Not(Box<Expr>),
/// True if argument is not NULL, false otherwise. This expression itself is never NULL.
IsNotNull(Box<Expr>),
/// True if argument is NULL, false otherwise. This expression itself is never NULL.
IsNull(Box<Expr>),
/// True if argument is true, false otherwise. This expression itself is never NULL.
IsTrue(Box<Expr>),
/// True if argument is false, false otherwise. This expression itself is never NULL.
IsFalse(Box<Expr>),
/// True if argument is NULL, false otherwise. This expression itself is never NULL.
IsUnknown(Box<Expr>),
/// True if argument is FALSE or NULL, false otherwise. This expression itself is never NULL.
IsNotTrue(Box<Expr>),
/// True if argument is TRUE OR NULL, false otherwise. This expression itself is never NULL.
IsNotFalse(Box<Expr>),
/// True if argument is TRUE or FALSE, false otherwise. This expression itself is never NULL.
IsNotUnknown(Box<Expr>),
/// arithmetic negation of an expression, the operand must be of a signed numeric data type
Negative(Box<Expr>),
/// Whether an expression is between a given range.
Between(Between),
/// The CASE expression is similar to a series of nested if/else and there are two forms that
/// can be used. The first form consists of a series of boolean "when" expressions with
/// corresponding "then" expressions, and an optional "else" expression.
///
/// ```text
/// CASE WHEN condition THEN result
/// [WHEN ...]
/// [ELSE result]
/// END
/// ```
///
/// The second form uses a base expression and then a series of "when" clauses that match on a
/// literal value.
///
/// ```text
/// CASE expression
/// WHEN value THEN result
/// [WHEN ...]
/// [ELSE result]
/// END
/// ```
Case(Case),
/// Casts the expression to a given type and will return a runtime error if the expression cannot be cast.
/// This expression is guaranteed to have a fixed type.
Cast(Cast),
/// Casts the expression to a given type and will return a null value if the expression cannot be cast.
/// This expression is guaranteed to have a fixed type.
TryCast(TryCast),
/// A sort expression, that can be used to sort values.
///
/// See [Expr::sort] for more details
Sort(Sort),
/// Represents the call of a scalar function with a set of arguments.
ScalarFunction(ScalarFunction),
/// Calls an aggregate function with arguments, and optional
/// `ORDER BY`, `FILTER`, `DISTINCT` and `NULL TREATMENT`.
///
/// See also [`ExprFunctionExt`] to set these fields.
///
/// [`ExprFunctionExt`]: crate::expr_fn::ExprFunctionExt
AggregateFunction(AggregateFunction),
/// Represents the call of a window function with arguments.
WindowFunction(WindowFunction),
/// Returns whether the list contains the expr value.
InList(InList),
/// EXISTS subquery
Exists(Exists),
/// IN subquery
InSubquery(InSubquery),
/// Scalar subquery
ScalarSubquery(Subquery),
/// Represents a reference to all available fields in a specific schema,
/// with an optional (schema) qualifier.
///
/// This expr has to be resolved to a list of columns before translating logical
/// plan into physical plan.
Wildcard { qualifier: Option<TableReference> },
/// List of grouping set expressions. Only valid in the context of an aggregate
/// GROUP BY expression list
GroupingSet(GroupingSet),
/// A place holder for parameters in a prepared statement
/// (e.g. `$foo` or `$1`)
Placeholder(Placeholder),
/// A place holder which hold a reference to a qualified field
/// in the outer query, used for correlated sub queries.
OuterReferenceColumn(DataType, Column),
/// Unnest expression
Unnest(Unnest),
}
impl Default for Expr {
fn default() -> Self {
Expr::Literal(ScalarValue::Null)
}
}
/// Create an [`Expr`] from a [`Column`]
impl From<Column> for Expr {
fn from(value: Column) -> Self {
Expr::Column(value)
}
}
/// Create an [`Expr`] from an optional qualifier and a [`FieldRef`]. This is
/// useful for creating [`Expr`] from a [`DFSchema`].
///
/// See example on [`Expr`]
impl<'a> From<(Option<&'a TableReference>, &'a FieldRef)> for Expr {
fn from(value: (Option<&'a TableReference>, &'a FieldRef)) -> Self {
Expr::from(Column::from(value))
}
}
/// UNNEST expression.
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct Unnest {
pub expr: Box<Expr>,
}
impl Unnest {
/// Create a new Unnest expression.
pub fn new(expr: Expr) -> Self {
Self {
expr: Box::new(expr),
}
}
/// Create a new Unnest expression.
pub fn new_boxed(boxed: Box<Expr>) -> Self {
Self { expr: boxed }
}
}
/// Alias expression
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct Alias {
pub expr: Box<Expr>,
pub relation: Option<TableReference>,
pub name: String,
}
impl Alias {
/// Create an alias with an optional schema/field qualifier.
pub fn new(
expr: Expr,
relation: Option<impl Into<TableReference>>,
name: impl Into<String>,
) -> Self {
Self {
expr: Box::new(expr),
relation: relation.map(|r| r.into()),
name: name.into(),
}
}
}
/// Binary expression
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct BinaryExpr {
/// Left-hand side of the expression
pub left: Box<Expr>,
/// The comparison operator
pub op: Operator,
/// Right-hand side of the expression
pub right: Box<Expr>,
}
impl BinaryExpr {
/// Create a new binary expression
pub fn new(left: Box<Expr>, op: Operator, right: Box<Expr>) -> Self {
Self { left, op, right }
}
}
impl Display for BinaryExpr {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
// Put parentheses around child binary expressions so that we can see the difference
// between `(a OR b) AND c` and `a OR (b AND c)`. We only insert parentheses when needed,
// based on operator precedence. For example, `(a AND b) OR c` and `a AND b OR c` are
// equivalent and the parentheses are not necessary.
fn write_child(
f: &mut Formatter<'_>,
expr: &Expr,
precedence: u8,
) -> fmt::Result {
match expr {
Expr::BinaryExpr(child) => {
let p = child.op.precedence();
if p == 0 || p < precedence {
write!(f, "({child})")?;
} else {
write!(f, "{child}")?;
}
}
_ => write!(f, "{expr}")?,
}
Ok(())
}
let precedence = self.op.precedence();
write_child(f, self.left.as_ref(), precedence)?;
write!(f, " {} ", self.op)?;
write_child(f, self.right.as_ref(), precedence)
}
}
/// CASE expression
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct Case {
/// Optional base expression that can be compared to literal values in the "when" expressions
pub expr: Option<Box<Expr>>,
/// One or more when/then expressions
pub when_then_expr: Vec<(Box<Expr>, Box<Expr>)>,
/// Optional "else" expression
pub else_expr: Option<Box<Expr>>,
}
impl Case {
/// Create a new Case expression
pub fn new(
expr: Option<Box<Expr>>,
when_then_expr: Vec<(Box<Expr>, Box<Expr>)>,
else_expr: Option<Box<Expr>>,
) -> Self {
Self {
expr,
when_then_expr,
else_expr,
}
}
}
/// LIKE expression
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct Like {
pub negated: bool,
pub expr: Box<Expr>,
pub pattern: Box<Expr>,
pub escape_char: Option<char>,
/// Whether to ignore case on comparing
pub case_insensitive: bool,
}
impl Like {
/// Create a new Like expression
pub fn new(
negated: bool,
expr: Box<Expr>,
pattern: Box<Expr>,
escape_char: Option<char>,
case_insensitive: bool,
) -> Self {
Self {
negated,
expr,
pattern,
escape_char,
case_insensitive,
}
}
}
/// BETWEEN expression
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct Between {
/// The value to compare
pub expr: Box<Expr>,
/// Whether the expression is negated
pub negated: bool,
/// The low end of the range
pub low: Box<Expr>,
/// The high end of the range
pub high: Box<Expr>,
}
impl Between {
/// Create a new Between expression
pub fn new(expr: Box<Expr>, negated: bool, low: Box<Expr>, high: Box<Expr>) -> Self {
Self {
expr,
negated,
low,
high,
}
}
}
/// ScalarFunction expression invokes a built-in scalar function
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct ScalarFunction {
/// The function
pub func: Arc<crate::ScalarUDF>,
/// List of expressions to feed to the functions as arguments
pub args: Vec<Expr>,
}
impl ScalarFunction {
// return the Function's name
pub fn name(&self) -> &str {
self.func.name()
}
}
impl ScalarFunction {
/// Create a new ScalarFunction expression with a user-defined function (UDF)
pub fn new_udf(udf: Arc<crate::ScalarUDF>, args: Vec<Expr>) -> Self {
Self { func: udf, args }
}
}
/// Access a sub field of a nested type, such as `Field` or `List`
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub enum GetFieldAccess {
/// Named field, for example `struct["name"]`
NamedStructField { name: ScalarValue },
/// Single list index, for example: `list[i]`
ListIndex { key: Box<Expr> },
/// List stride, for example `list[i:j:k]`
ListRange {
start: Box<Expr>,
stop: Box<Expr>,
stride: Box<Expr>,
},
}
/// Cast expression
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct Cast {
/// The expression being cast
pub expr: Box<Expr>,
/// The `DataType` the expression will yield
pub data_type: DataType,
}
impl Cast {
/// Create a new Cast expression
pub fn new(expr: Box<Expr>, data_type: DataType) -> Self {
Self { expr, data_type }
}
}
/// TryCast Expression
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct TryCast {
/// The expression being cast
pub expr: Box<Expr>,
/// The `DataType` the expression will yield
pub data_type: DataType,
}
impl TryCast {
/// Create a new TryCast expression
pub fn new(expr: Box<Expr>, data_type: DataType) -> Self {
Self { expr, data_type }
}
}
/// SORT expression
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct Sort {
/// The expression to sort on
pub expr: Box<Expr>,
/// The direction of the sort
pub asc: bool,
/// Whether to put Nulls before all other data values
pub nulls_first: bool,
}
impl Sort {
/// Create a new Sort expression
pub fn new(expr: Box<Expr>, asc: bool, nulls_first: bool) -> Self {
Self {
expr,
asc,
nulls_first,
}
}
/// Create a new Sort expression with the opposite sort direction
pub fn reverse(&self) -> Self {
Self {
expr: self.expr.clone(),
asc: !self.asc,
nulls_first: !self.nulls_first,
}
}
}
/// Aggregate function
///
/// See also [`ExprFunctionExt`] to set these fields on `Expr`
///
/// [`ExprFunctionExt`]: crate::expr_fn::ExprFunctionExt
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct AggregateFunction {
/// Name of the function
pub func: Arc<crate::AggregateUDF>,
/// List of expressions to feed to the functions as arguments
pub args: Vec<Expr>,
/// Whether this is a DISTINCT aggregation or not
pub distinct: bool,
/// Optional filter
pub filter: Option<Box<Expr>>,
/// Optional ordering
pub order_by: Option<Vec<Expr>>,
pub null_treatment: Option<NullTreatment>,
}
impl AggregateFunction {
/// Create a new AggregateFunction expression with a user-defined function (UDF)
pub fn new_udf(
func: Arc<crate::AggregateUDF>,
args: Vec<Expr>,
distinct: bool,
filter: Option<Box<Expr>>,
order_by: Option<Vec<Expr>>,
null_treatment: Option<NullTreatment>,
) -> Self {
Self {
func,
args,
distinct,
filter,
order_by,
null_treatment,
}
}
}
/// WindowFunction
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
/// Defines which implementation of an aggregate function DataFusion should call.
pub enum WindowFunctionDefinition {
/// A built in aggregate function that leverages an aggregate function
/// A a built-in window function
BuiltInWindowFunction(built_in_window_function::BuiltInWindowFunction),
/// A user defined aggregate function
AggregateUDF(Arc<crate::AggregateUDF>),
/// A user defined aggregate function
WindowUDF(Arc<crate::WindowUDF>),
}
impl WindowFunctionDefinition {
/// Returns the datatype of the window function
pub fn return_type(
&self,
input_expr_types: &[DataType],
_input_expr_nullable: &[bool],
) -> Result<DataType> {
match self {
WindowFunctionDefinition::BuiltInWindowFunction(fun) => {
fun.return_type(input_expr_types)
}
WindowFunctionDefinition::AggregateUDF(fun) => {
fun.return_type(input_expr_types)
}
WindowFunctionDefinition::WindowUDF(fun) => fun.return_type(input_expr_types),
}
}
/// the signatures supported by the function `fun`.
pub fn signature(&self) -> Signature {
match self {
WindowFunctionDefinition::BuiltInWindowFunction(fun) => fun.signature(),
WindowFunctionDefinition::AggregateUDF(fun) => fun.signature().clone(),
WindowFunctionDefinition::WindowUDF(fun) => fun.signature().clone(),
}
}
/// Function's name for display
pub fn name(&self) -> &str {
match self {
WindowFunctionDefinition::BuiltInWindowFunction(fun) => fun.name(),
WindowFunctionDefinition::WindowUDF(fun) => fun.name(),
WindowFunctionDefinition::AggregateUDF(fun) => fun.name(),
}
}
}
impl fmt::Display for WindowFunctionDefinition {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
WindowFunctionDefinition::BuiltInWindowFunction(fun) => {
std::fmt::Display::fmt(fun, f)
}
WindowFunctionDefinition::AggregateUDF(fun) => std::fmt::Display::fmt(fun, f),
WindowFunctionDefinition::WindowUDF(fun) => std::fmt::Display::fmt(fun, f),
}
}
}
impl From<BuiltInWindowFunction> for WindowFunctionDefinition {
fn from(value: BuiltInWindowFunction) -> Self {
Self::BuiltInWindowFunction(value)
}
}
impl From<Arc<crate::AggregateUDF>> for WindowFunctionDefinition {
fn from(value: Arc<crate::AggregateUDF>) -> Self {
Self::AggregateUDF(value)
}
}
impl From<Arc<WindowUDF>> for WindowFunctionDefinition {
fn from(value: Arc<WindowUDF>) -> Self {
Self::WindowUDF(value)
}
}
/// Window function
///
/// Holds the actual actual function to call [`WindowFunction`] as well as its
/// arguments (`args`) and the contents of the `OVER` clause:
///
/// 1. `PARTITION BY`
/// 2. `ORDER BY`
/// 3. Window frame (e.g. `ROWS 1 PRECEDING AND 1 FOLLOWING`)
///
/// # Example
/// ```
/// # use datafusion_expr::{Expr, BuiltInWindowFunction, col, ExprFunctionExt};
/// # use datafusion_expr::expr::WindowFunction;
/// // Create FIRST_VALUE(a) OVER (PARTITION BY b ORDER BY c)
/// let expr = Expr::WindowFunction(
/// WindowFunction::new(BuiltInWindowFunction::FirstValue, vec![col("a")])
/// )
/// .partition_by(vec![col("b")])
/// .order_by(vec![col("b").sort(true, true)])
/// .build()
/// .unwrap();
/// ```
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct WindowFunction {
/// Name of the function
pub fun: WindowFunctionDefinition,
/// List of expressions to feed to the functions as arguments
pub args: Vec<Expr>,
/// List of partition by expressions
pub partition_by: Vec<Expr>,
/// List of order by expressions
pub order_by: Vec<Expr>,
/// Window frame
pub window_frame: window_frame::WindowFrame,
/// Specifies how NULL value is treated: ignore or respect
pub null_treatment: Option<NullTreatment>,
}
impl WindowFunction {
/// Create a new Window expression with the specified argument an
/// empty `OVER` clause
pub fn new(fun: impl Into<WindowFunctionDefinition>, args: Vec<Expr>) -> Self {
Self {
fun: fun.into(),
args,
partition_by: Vec::default(),
order_by: Vec::default(),
window_frame: WindowFrame::new(None),
null_treatment: None,
}
}
}
/// Find DataFusion's built-in window function by name.
pub fn find_df_window_func(name: &str) -> Option<WindowFunctionDefinition> {
let name = name.to_lowercase();
// Code paths for window functions leveraging ordinary aggregators and
// built-in window functions are quite different, and the same function
// may have different implementations for these cases. If the sought
// function is not found among built-in window functions, we search for
// it among aggregate functions.
if let Ok(built_in_function) =
built_in_window_function::BuiltInWindowFunction::from_str(name.as_str())
{
Some(WindowFunctionDefinition::BuiltInWindowFunction(
built_in_function,
))
} else {
None
}
}
/// EXISTS expression
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct Exists {
/// subquery that will produce a single column of data
pub subquery: Subquery,
/// Whether the expression is negated
pub negated: bool,
}
impl Exists {
// Create a new Exists expression.
pub fn new(subquery: Subquery, negated: bool) -> Self {
Self { subquery, negated }
}
}
/// User Defined Aggregate Function
///
/// See [`udaf::AggregateUDF`] for more information.
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct AggregateUDF {
/// The function
pub fun: Arc<udaf::AggregateUDF>,
/// List of expressions to feed to the functions as arguments
pub args: Vec<Expr>,
/// Optional filter
pub filter: Option<Box<Expr>>,
/// Optional ORDER BY applied prior to aggregating
pub order_by: Option<Vec<Expr>>,
}
impl AggregateUDF {
/// Create a new AggregateUDF expression
pub fn new(
fun: Arc<udaf::AggregateUDF>,
args: Vec<Expr>,
filter: Option<Box<Expr>>,
order_by: Option<Vec<Expr>>,
) -> Self {
Self {
fun,
args,
filter,
order_by,
}
}
}
/// InList expression
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct InList {
/// The expression to compare
pub expr: Box<Expr>,
/// The list of values to compare against
pub list: Vec<Expr>,
/// Whether the expression is negated
pub negated: bool,
}
impl InList {
/// Create a new InList expression
pub fn new(expr: Box<Expr>, list: Vec<Expr>, negated: bool) -> Self {
Self {
expr,
list,
negated,
}
}
}
/// IN subquery
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct InSubquery {
/// The expression to compare
pub expr: Box<Expr>,
/// Subquery that will produce a single column of data to compare against
pub subquery: Subquery,
/// Whether the expression is negated
pub negated: bool,
}
impl InSubquery {
/// Create a new InSubquery expression
pub fn new(expr: Box<Expr>, subquery: Subquery, negated: bool) -> Self {
Self {
expr,
subquery,
negated,
}
}
}
/// Placeholder, representing bind parameter values such as `$1` or `$name`.
///
/// The type of these parameters is inferred using [`Expr::infer_placeholder_types`]
/// or can be specified directly using `PREPARE` statements.
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct Placeholder {
/// The identifier of the parameter, including the leading `$` (e.g, `"$1"` or `"$foo"`)
pub id: String,
/// The type the parameter will be filled in with
pub data_type: Option<DataType>,
}
impl Placeholder {
/// Create a new Placeholder expression
pub fn new(id: String, data_type: Option<DataType>) -> Self {
Self { id, data_type }
}
}
/// Grouping sets
///
/// See <https://www.postgresql.org/docs/current/queries-table-expressions.html#QUERIES-GROUPING-SETS>
/// for Postgres definition.
/// See <https://spark.apache.org/docs/latest/sql-ref-syntax-qry-select-groupby.html>
/// for Apache Spark definition.
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub enum GroupingSet {
/// Rollup grouping sets
Rollup(Vec<Expr>),
/// Cube grouping sets
Cube(Vec<Expr>),
/// User-defined grouping sets
GroupingSets(Vec<Vec<Expr>>),
}
impl GroupingSet {
/// Return all distinct exprs in the grouping set. For `CUBE` and `ROLLUP` this
/// is just the underlying list of exprs. For `GROUPING SET` we need to deduplicate
/// the exprs in the underlying sets.
pub fn distinct_expr(&self) -> Vec<&Expr> {
match self {
GroupingSet::Rollup(exprs) | GroupingSet::Cube(exprs) => {
exprs.iter().collect()
}
GroupingSet::GroupingSets(groups) => {
let mut exprs: Vec<&Expr> = vec![];
for exp in groups.iter().flatten() {
if !exprs.contains(&exp) {
exprs.push(exp);
}
}
exprs
}
}
}
}
/// Fixed seed for the hashing so that Ords are consistent across runs
const SEED: ahash::RandomState = ahash::RandomState::with_seeds(0, 0, 0, 0);
impl PartialOrd for Expr {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
let s = SEED.hash_one(self);
let o = SEED.hash_one(other);
Some(s.cmp(&o))
}
}
impl Expr {
/// Returns the name of this expression as it should appear in a schema. This name
/// will not include any CAST expressions.
pub fn display_name(&self) -> Result<String> {
create_name(self)
}
/// Returns a full and complete string representation of this expression.
pub fn canonical_name(&self) -> String {
format!("{self}")
}
/// Return String representation of the variant represented by `self`
/// Useful for non-rust based bindings
pub fn variant_name(&self) -> &str {
match self {
Expr::AggregateFunction { .. } => "AggregateFunction",
Expr::Alias(..) => "Alias",
Expr::Between { .. } => "Between",
Expr::BinaryExpr { .. } => "BinaryExpr",
Expr::Case { .. } => "Case",
Expr::Cast { .. } => "Cast",
Expr::Column(..) => "Column",
Expr::OuterReferenceColumn(_, _) => "Outer",
Expr::Exists { .. } => "Exists",
Expr::GroupingSet(..) => "GroupingSet",
Expr::InList { .. } => "InList",
Expr::InSubquery(..) => "InSubquery",
Expr::IsNotNull(..) => "IsNotNull",
Expr::IsNull(..) => "IsNull",
Expr::Like { .. } => "Like",
Expr::SimilarTo { .. } => "RLike",
Expr::IsTrue(..) => "IsTrue",
Expr::IsFalse(..) => "IsFalse",
Expr::IsUnknown(..) => "IsUnknown",
Expr::IsNotTrue(..) => "IsNotTrue",
Expr::IsNotFalse(..) => "IsNotFalse",
Expr::IsNotUnknown(..) => "IsNotUnknown",
Expr::Literal(..) => "Literal",
Expr::Negative(..) => "Negative",
Expr::Not(..) => "Not",
Expr::Placeholder(_) => "Placeholder",
Expr::ScalarFunction(..) => "ScalarFunction",
Expr::ScalarSubquery { .. } => "ScalarSubquery",
Expr::ScalarVariable(..) => "ScalarVariable",
Expr::Sort { .. } => "Sort",
Expr::TryCast { .. } => "TryCast",
Expr::WindowFunction { .. } => "WindowFunction",
Expr::Wildcard { .. } => "Wildcard",
Expr::Unnest { .. } => "Unnest",
}
}
/// Return `self == other`
pub fn eq(self, other: Expr) -> Expr {
binary_expr(self, Operator::Eq, other)
}
/// Return `self != other`
pub fn not_eq(self, other: Expr) -> Expr {
binary_expr(self, Operator::NotEq, other)
}
/// Return `self > other`
pub fn gt(self, other: Expr) -> Expr {
binary_expr(self, Operator::Gt, other)
}
/// Return `self >= other`
pub fn gt_eq(self, other: Expr) -> Expr {
binary_expr(self, Operator::GtEq, other)
}
/// Return `self < other`
pub fn lt(self, other: Expr) -> Expr {
binary_expr(self, Operator::Lt, other)
}
/// Return `self <= other`
pub fn lt_eq(self, other: Expr) -> Expr {
binary_expr(self, Operator::LtEq, other)
}
/// Return `self && other`
pub fn and(self, other: Expr) -> Expr {
binary_expr(self, Operator::And, other)
}
/// Return `self || other`
pub fn or(self, other: Expr) -> Expr {
binary_expr(self, Operator::Or, other)
}
/// Return `self LIKE other`
pub fn like(self, other: Expr) -> Expr {
Expr::Like(Like::new(
false,
Box::new(self),
Box::new(other),
None,
false,
))
}
/// Return `self NOT LIKE other`
pub fn not_like(self, other: Expr) -> Expr {
Expr::Like(Like::new(
true,
Box::new(self),
Box::new(other),
None,
false,
))
}
/// Return `self ILIKE other`
pub fn ilike(self, other: Expr) -> Expr {
Expr::Like(Like::new(
false,
Box::new(self),
Box::new(other),
None,
true,
))
}
/// Return `self NOT ILIKE other`
pub fn not_ilike(self, other: Expr) -> Expr {
Expr::Like(Like::new(true, Box::new(self), Box::new(other), None, true))
}
/// Return the name to use for the specific Expr, recursing into
/// `Expr::Sort` as appropriate
pub fn name_for_alias(&self) -> Result<String> {
match self {
// call Expr::display_name() on a Expr::Sort will throw an error
Expr::Sort(Sort { expr, .. }) => expr.name_for_alias(),
expr => expr.display_name(),
}
}
/// Ensure `expr` has the name as `original_name` by adding an
/// alias if necessary.
pub fn alias_if_changed(self, original_name: String) -> Result<Expr> {
let new_name = self.name_for_alias()?;
if new_name == original_name {
return Ok(self);
}
Ok(self.alias(original_name))
}
/// Return `self AS name` alias expression
pub fn alias(self, name: impl Into<String>) -> Expr {
match self {
Expr::Sort(Sort {
expr,
asc,
nulls_first,
}) => Expr::Sort(Sort::new(Box::new(expr.alias(name)), asc, nulls_first)),
_ => Expr::Alias(Alias::new(self, None::<&str>, name.into())),
}
}
/// Return `self AS name` alias expression with a specific qualifier
pub fn alias_qualified(
self,
relation: Option<impl Into<TableReference>>,
name: impl Into<String>,
) -> Expr {
match self {
Expr::Sort(Sort {
expr,
asc,
nulls_first,
}) => Expr::Sort(Sort::new(
Box::new(expr.alias_qualified(relation, name)),
asc,
nulls_first,
)),
_ => Expr::Alias(Alias::new(self, relation, name.into())),
}
}
/// Remove an alias from an expression if one exists.
///
/// If the expression is not an alias, the expression is returned unchanged.
/// This method does not remove aliases from nested expressions.
///
/// # Example
/// ```
/// # use datafusion_expr::col;
/// // `foo as "bar"` is unaliased to `foo`
/// let expr = col("foo").alias("bar");
/// assert_eq!(expr.unalias(), col("foo"));
///
/// // `foo as "bar" + baz` is not unaliased
/// let expr = col("foo").alias("bar") + col("baz");
/// assert_eq!(expr.clone().unalias(), expr);
///
/// // `foo as "bar" as "baz" is unalaised to foo as "bar"
/// let expr = col("foo").alias("bar").alias("baz");
/// assert_eq!(expr.unalias(), col("foo").alias("bar"));
/// ```
pub fn unalias(self) -> Expr {
match self {
Expr::Alias(alias) => *alias.expr,
_ => self,
}
}
/// Recursively removed potentially multiple aliases from an expression.
///
/// This method removes nested aliases and returns [`Transformed`]
/// to signal if the expression was changed.
///
/// # Example
/// ```
/// # use datafusion_expr::col;
/// // `foo as "bar"` is unaliased to `foo`
/// let expr = col("foo").alias("bar");
/// assert_eq!(expr.unalias_nested().data, col("foo"));
///
/// // `foo as "bar" + baz` is unaliased
/// let expr = col("foo").alias("bar") + col("baz");
/// assert_eq!(expr.clone().unalias_nested().data, col("foo") + col("baz"));
///
/// // `foo as "bar" as "baz" is unalaised to foo
/// let expr = col("foo").alias("bar").alias("baz");
/// assert_eq!(expr.unalias_nested().data, col("foo"));
/// ```
pub fn unalias_nested(self) -> Transformed<Expr> {
self.transform_down_up(
|expr| {
// f_down: skip subqueries. Check in f_down to avoid recursing into them
let recursion = if matches!(
expr,
Expr::Exists { .. } | Expr::ScalarSubquery(_) | Expr::InSubquery(_)
) {
// subqueries could contain aliases so don't recurse into those
TreeNodeRecursion::Jump
} else {
TreeNodeRecursion::Continue
};
Ok(Transformed::new(expr, false, recursion))
},
|expr| {
// f_up: unalias on up so we can remove nested aliases like
// `(x as foo) as bar`
if let Expr::Alias(Alias { expr, .. }) = expr {
Ok(Transformed::yes(*expr))
} else {
Ok(Transformed::no(expr))
}
},
)
// unreachable code: internal closure doesn't return err
.unwrap()
}
/// Return `self IN <list>` if `negated` is false, otherwise
/// return `self NOT IN <list>`.a
pub fn in_list(self, list: Vec<Expr>, negated: bool) -> Expr {
Expr::InList(InList::new(Box::new(self), list, negated))
}
/// Return `IsNull(Box(self))
pub fn is_null(self) -> Expr {
Expr::IsNull(Box::new(self))
}
/// Return `IsNotNull(Box(self))
pub fn is_not_null(self) -> Expr {
Expr::IsNotNull(Box::new(self))
}
/// Create a sort expression from an existing expression.
///
/// ```
/// # use datafusion_expr::col;
/// let sort_expr = col("foo").sort(true, true); // SORT ASC NULLS_FIRST
/// ```
pub fn sort(self, asc: bool, nulls_first: bool) -> Expr {
Expr::Sort(Sort::new(Box::new(self), asc, nulls_first))
}
/// Return `IsTrue(Box(self))`
pub fn is_true(self) -> Expr {
Expr::IsTrue(Box::new(self))
}
/// Return `IsNotTrue(Box(self))`
pub fn is_not_true(self) -> Expr {
Expr::IsNotTrue(Box::new(self))
}
/// Return `IsFalse(Box(self))`
pub fn is_false(self) -> Expr {
Expr::IsFalse(Box::new(self))
}
/// Return `IsNotFalse(Box(self))`
pub fn is_not_false(self) -> Expr {
Expr::IsNotFalse(Box::new(self))
}
/// Return `IsUnknown(Box(self))`
pub fn is_unknown(self) -> Expr {
Expr::IsUnknown(Box::new(self))
}
/// Return `IsNotUnknown(Box(self))`
pub fn is_not_unknown(self) -> Expr {
Expr::IsNotUnknown(Box::new(self))
}
/// return `self BETWEEN low AND high`
pub fn between(self, low: Expr, high: Expr) -> Expr {
Expr::Between(Between::new(
Box::new(self),
false,
Box::new(low),
Box::new(high),
))
}
/// return `self NOT BETWEEN low AND high`
pub fn not_between(self, low: Expr, high: Expr) -> Expr {
Expr::Between(Between::new(
Box::new(self),
true,
Box::new(low),
Box::new(high),
))
}
#[deprecated(since = "39.0.0", note = "use try_as_col instead")]
pub fn try_into_col(&self) -> Result<Column> {
match self {
Expr::Column(it) => Ok(it.clone()),
_ => plan_err!("Could not coerce '{self}' into Column!"),
}
}
/// Return a reference to the inner `Column` if any
///
/// returns `None` if the expression is not a `Column`
///
/// Note: None may be returned for expressions that are not `Column` but
/// are convertible to `Column` such as `Cast` expressions.
///
/// Example
/// ```
/// # use datafusion_common::Column;
/// use datafusion_expr::{col, Expr};
/// let expr = col("foo");
/// assert_eq!(expr.try_as_col(), Some(&Column::from("foo")));
///
/// let expr = col("foo").alias("bar");
/// assert_eq!(expr.try_as_col(), None);
/// ```
pub fn try_as_col(&self) -> Option<&Column> {
if let Expr::Column(it) = self {
Some(it)
} else {
None
}
}
/// Returns the inner `Column` if any. This is a specialized version of
/// [`Self::try_as_col`] that take Cast expressions into account when the
/// expression is as on condition for joins.
///
/// Called this method when you are sure that the expression is a `Column`
/// or a `Cast` expression that wraps a `Column`.
pub fn get_as_join_column(&self) -> Option<&Column> {
match self {
Expr::Column(c) => Some(c),
Expr::Cast(Cast { expr, .. }) => match &**expr {
Expr::Column(c) => Some(c),
_ => None,
},
_ => None,
}
}
/// Return all referenced columns of this expression.
#[deprecated(since = "40.0.0", note = "use Expr::column_refs instead")]
pub fn to_columns(&self) -> Result<HashSet<Column>> {
let mut using_columns = HashSet::new();
expr_to_columns(self, &mut using_columns)?;
Ok(using_columns)
}
/// Return all references to columns in this expression.
///
/// # Example
/// ```
/// # use std::collections::HashSet;
/// # use datafusion_common::Column;
/// # use datafusion_expr::col;
/// // For an expression `a + (b * a)`
/// let expr = col("a") + (col("b") * col("a"));
/// let refs = expr.column_refs();
/// // refs contains "a" and "b"
/// assert_eq!(refs.len(), 2);
/// assert!(refs.contains(&Column::new_unqualified("a")));
/// assert!(refs.contains(&Column::new_unqualified("b")));
/// ```
pub fn column_refs(&self) -> HashSet<&Column> {
let mut using_columns = HashSet::new();
self.add_column_refs(&mut using_columns);
using_columns
}
/// Adds references to all columns in this expression to the set
///
/// See [`Self::column_refs`] for details
pub fn add_column_refs<'a>(&'a self, set: &mut HashSet<&'a Column>) {
self.apply(|expr| {
if let Expr::Column(col) = expr {
set.insert(col);
}
Ok(TreeNodeRecursion::Continue)
})
.expect("traversal is infallible");
}
/// Return all references to columns and their occurrence counts in the expression.
///
/// # Example
/// ```
/// # use std::collections::HashMap;
/// # use datafusion_common::Column;
/// # use datafusion_expr::col;
/// // For an expression `a + (b * a)`
/// let expr = col("a") + (col("b") * col("a"));
/// let mut refs = expr.column_refs_counts();
/// // refs contains "a" and "b"
/// assert_eq!(refs.len(), 2);
/// assert_eq!(*refs.get(&Column::new_unqualified("a")).unwrap(), 2);
/// assert_eq!(*refs.get(&Column::new_unqualified("b")).unwrap(), 1);
/// ```
pub fn column_refs_counts(&self) -> HashMap<&Column, usize> {
let mut map = HashMap::new();
self.add_column_ref_counts(&mut map);
map
}
/// Adds references to all columns and their occurrence counts in the expression to
/// the map.
///
/// See [`Self::column_refs_counts`] for details
pub fn add_column_ref_counts<'a>(&'a self, map: &mut HashMap<&'a Column, usize>) {
self.apply(|expr| {
if let Expr::Column(col) = expr {
*map.entry(col).or_default() += 1;
}
Ok(TreeNodeRecursion::Continue)
})
.expect("traversal is infallible");
}
/// Returns true if there are any column references in this Expr
pub fn any_column_refs(&self) -> bool {
self.exists(|expr| Ok(matches!(expr, Expr::Column(_))))
.unwrap()
}
/// Return true when the expression contains out reference(correlated) expressions.
pub fn contains_outer(&self) -> bool {
self.exists(|expr| Ok(matches!(expr, Expr::OuterReferenceColumn { .. })))
.unwrap()
}
/// Returns true if the expression node is volatile, i.e. whether it can return
/// different results when evaluated multiple times with the same input.
/// Note: unlike [`Self::is_volatile`], this function does not consider inputs:
/// - `rand()` returns `true`,
/// - `a + rand()` returns `false`
pub fn is_volatile_node(&self) -> bool {
matches!(self, Expr::ScalarFunction(func) if func.func.signature().volatility == Volatility::Volatile)
}
/// Returns true if the expression is volatile, i.e. whether it can return different
/// results when evaluated multiple times with the same input.
pub fn is_volatile(&self) -> Result<bool> {
self.exists(|expr| Ok(expr.is_volatile_node()))
}
/// Recursively find all [`Expr::Placeholder`] expressions, and
/// to infer their [`DataType`] from the context of their use.
///
/// For example, gicen an expression like `<int32> = $0` will infer `$0` to
/// have type `int32`.
pub fn infer_placeholder_types(self, schema: &DFSchema) -> Result<Expr> {
self.transform(|mut expr| {
// Default to assuming the arguments are the same type
if let Expr::BinaryExpr(BinaryExpr { left, op: _, right }) = &mut expr {
rewrite_placeholder(left.as_mut(), right.as_ref(), schema)?;
rewrite_placeholder(right.as_mut(), left.as_ref(), schema)?;
};
if let Expr::Between(Between {
expr,
negated: _,
low,
high,
}) = &mut expr
{
rewrite_placeholder(low.as_mut(), expr.as_ref(), schema)?;
rewrite_placeholder(high.as_mut(), expr.as_ref(), schema)?;
}
Ok(Transformed::yes(expr))
})
.data()
}
/// Returns true if some of this `exprs` subexpressions may not be evaluated
/// and thus any side effects (like divide by zero) may not be encountered
pub fn short_circuits(&self) -> bool {
match self {
Expr::ScalarFunction(ScalarFunction { func, .. }) => func.short_circuits(),
Expr::BinaryExpr(BinaryExpr { op, .. }) => {
matches!(op, Operator::And | Operator::Or)
}
Expr::Case { .. } => true,
// Use explicit pattern match instead of a default
// implementation, so that in the future if someone adds
// new Expr types, they will check here as well
Expr::AggregateFunction(..)
| Expr::Alias(..)
| Expr::Between(..)
| Expr::Cast(..)
| Expr::Column(..)
| Expr::Exists(..)
| Expr::GroupingSet(..)
| Expr::InList(..)
| Expr::InSubquery(..)
| Expr::IsFalse(..)
| Expr::IsNotFalse(..)
| Expr::IsNotNull(..)
| Expr::IsNotTrue(..)
| Expr::IsNotUnknown(..)
| Expr::IsNull(..)
| Expr::IsTrue(..)
| Expr::IsUnknown(..)
| Expr::Like(..)
| Expr::ScalarSubquery(..)
| Expr::ScalarVariable(_, _)
| Expr::SimilarTo(..)
| Expr::Not(..)
| Expr::Negative(..)
| Expr::OuterReferenceColumn(_, _)
| Expr::TryCast(..)
| Expr::Unnest(..)
| Expr::Wildcard { .. }
| Expr::WindowFunction(..)
| Expr::Literal(..)
| Expr::Sort(..)
| Expr::Placeholder(..) => false,
}
}
/// Hashes the direct content of an `Expr` without recursing into its children.
///
/// This method is useful to incrementally compute hashes, such as in
/// `CommonSubexprEliminate` which builds a deep hash of a node and its descendants
/// during the bottom-up phase of the first traversal and so avoid computing the hash
/// of the node and then the hash of its descendants separately.
///
/// If a node doesn't have any children then this method is similar to `.hash()`, but
/// not necessarily returns the same value.
///
/// As it is pretty easy to forget changing this method when `Expr` changes the
/// implementation doesn't use wildcard patterns (`..`, `_`) to catch changes
/// compile time.
pub fn hash_node<H: Hasher>(&self, hasher: &mut H) {
mem::discriminant(self).hash(hasher);
match self {
Expr::Alias(Alias {
expr: _expr,
relation,
name,
}) => {
relation.hash(hasher);
name.hash(hasher);
}
Expr::Column(column) => {
column.hash(hasher);
}
Expr::ScalarVariable(data_type, name) => {
data_type.hash(hasher);
name.hash(hasher);
}
Expr::Literal(scalar_value) => {
scalar_value.hash(hasher);
}
Expr::BinaryExpr(BinaryExpr {
left: _left,
op,
right: _right,
}) => {
op.hash(hasher);
}
Expr::Like(Like {
negated,
expr: _expr,
pattern: _pattern,
escape_char,
case_insensitive,
})
| Expr::SimilarTo(Like {
negated,
expr: _expr,
pattern: _pattern,
escape_char,
case_insensitive,
}) => {
negated.hash(hasher);
escape_char.hash(hasher);
case_insensitive.hash(hasher);
}
Expr::Not(_expr)
| Expr::IsNotNull(_expr)
| Expr::IsNull(_expr)
| Expr::IsTrue(_expr)
| Expr::IsFalse(_expr)
| Expr::IsUnknown(_expr)
| Expr::IsNotTrue(_expr)
| Expr::IsNotFalse(_expr)
| Expr::IsNotUnknown(_expr)
| Expr::Negative(_expr) => {}
Expr::Between(Between {
expr: _expr,
negated,
low: _low,
high: _high,
}) => {
negated.hash(hasher);
}
Expr::Case(Case {
expr: _expr,
when_then_expr: _when_then_expr,
else_expr: _else_expr,
}) => {}
Expr::Cast(Cast {
expr: _expr,
data_type,
})
| Expr::TryCast(TryCast {
expr: _expr,
data_type,
}) => {
data_type.hash(hasher);
}
Expr::Sort(Sort {
expr: _expr,
asc,
nulls_first,
}) => {
asc.hash(hasher);
nulls_first.hash(hasher);
}
Expr::ScalarFunction(ScalarFunction { func, args: _args }) => {
func.hash(hasher);
}
Expr::AggregateFunction(AggregateFunction {
func,
args: _args,
distinct,
filter: _filter,
order_by: _order_by,
null_treatment,
}) => {
func.hash(hasher);
distinct.hash(hasher);
null_treatment.hash(hasher);
}
Expr::WindowFunction(WindowFunction {
fun,
args: _args,
partition_by: _partition_by,
order_by: _order_by,
window_frame,
null_treatment,
}) => {
fun.hash(hasher);
window_frame.hash(hasher);
null_treatment.hash(hasher);
}
Expr::InList(InList {
expr: _expr,
list: _list,
negated,
}) => {
negated.hash(hasher);
}
Expr::Exists(Exists { subquery, negated }) => {
subquery.hash(hasher);
negated.hash(hasher);
}
Expr::InSubquery(InSubquery {
expr: _expr,
subquery,
negated,
}) => {
subquery.hash(hasher);
negated.hash(hasher);
}
Expr::ScalarSubquery(subquery) => {
subquery.hash(hasher);
}
Expr::Wildcard { qualifier } => {
qualifier.hash(hasher);
}
Expr::GroupingSet(grouping_set) => {
mem::discriminant(grouping_set).hash(hasher);
match grouping_set {
GroupingSet::Rollup(_exprs) | GroupingSet::Cube(_exprs) => {}
GroupingSet::GroupingSets(_exprs) => {}
}
}
Expr::Placeholder(place_holder) => {
place_holder.hash(hasher);
}
Expr::OuterReferenceColumn(data_type, column) => {
data_type.hash(hasher);
column.hash(hasher);
}
Expr::Unnest(Unnest { expr: _expr }) => {}
};
}
}
// modifies expr if it is a placeholder with datatype of right
fn rewrite_placeholder(expr: &mut Expr, other: &Expr, schema: &DFSchema) -> Result<()> {
if let Expr::Placeholder(Placeholder { id: _, data_type }) = expr {
if data_type.is_none() {
let other_dt = other.get_type(schema);
match other_dt {
Err(e) => {
Err(e.context(format!(
"Can not find type of {other} needed to infer type of {expr}"
)))?;
}
Ok(dt) => {
*data_type = Some(dt);
}
}
};
}
Ok(())
}
#[macro_export]
macro_rules! expr_vec_fmt {
( $ARRAY:expr ) => {{
$ARRAY
.iter()
.map(|e| format!("{e}"))
.collect::<Vec<String>>()
.join(", ")
}};
}
/// Format expressions for display as part of a logical plan. In many cases, this will produce
/// similar output to `Expr.name()` except that column names will be prefixed with '#'.
impl fmt::Display for Expr {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Expr::Alias(Alias { expr, name, .. }) => write!(f, "{expr} AS {name}"),
Expr::Column(c) => write!(f, "{c}"),
Expr::OuterReferenceColumn(_, c) => write!(f, "outer_ref({c})"),
Expr::ScalarVariable(_, var_names) => write!(f, "{}", var_names.join(".")),
Expr::Literal(v) => write!(f, "{v:?}"),
Expr::Case(case) => {
write!(f, "CASE ")?;
if let Some(e) = &case.expr {
write!(f, "{e} ")?;
}
for (w, t) in &case.when_then_expr {
write!(f, "WHEN {w} THEN {t} ")?;
}
if let Some(e) = &case.else_expr {
write!(f, "ELSE {e} ")?;
}
write!(f, "END")
}
Expr::Cast(Cast { expr, data_type }) => {
write!(f, "CAST({expr} AS {data_type:?})")
}
Expr::TryCast(TryCast { expr, data_type }) => {
write!(f, "TRY_CAST({expr} AS {data_type:?})")
}
Expr::Not(expr) => write!(f, "NOT {expr}"),
Expr::Negative(expr) => write!(f, "(- {expr})"),
Expr::IsNull(expr) => write!(f, "{expr} IS NULL"),
Expr::IsNotNull(expr) => write!(f, "{expr} IS NOT NULL"),
Expr::IsTrue(expr) => write!(f, "{expr} IS TRUE"),
Expr::IsFalse(expr) => write!(f, "{expr} IS FALSE"),
Expr::IsUnknown(expr) => write!(f, "{expr} IS UNKNOWN"),
Expr::IsNotTrue(expr) => write!(f, "{expr} IS NOT TRUE"),
Expr::IsNotFalse(expr) => write!(f, "{expr} IS NOT FALSE"),
Expr::IsNotUnknown(expr) => write!(f, "{expr} IS NOT UNKNOWN"),
Expr::Exists(Exists {
subquery,
negated: true,
}) => write!(f, "NOT EXISTS ({subquery:?})"),
Expr::Exists(Exists {
subquery,
negated: false,
}) => write!(f, "EXISTS ({subquery:?})"),
Expr::InSubquery(InSubquery {
expr,
subquery,
negated: true,
}) => write!(f, "{expr} NOT IN ({subquery:?})"),
Expr::InSubquery(InSubquery {
expr,
subquery,
negated: false,
}) => write!(f, "{expr} IN ({subquery:?})"),
Expr::ScalarSubquery(subquery) => write!(f, "({subquery:?})"),
Expr::BinaryExpr(expr) => write!(f, "{expr}"),
Expr::Sort(Sort {
expr,
asc,
nulls_first,
}) => {
if *asc {
write!(f, "{expr} ASC")?;
} else {
write!(f, "{expr} DESC")?;
}
if *nulls_first {
write!(f, " NULLS FIRST")
} else {
write!(f, " NULLS LAST")
}
}
Expr::ScalarFunction(fun) => {
fmt_function(f, fun.name(), false, &fun.args, true)
}
Expr::WindowFunction(WindowFunction {
fun,
args,
partition_by,
order_by,
window_frame,
null_treatment,
}) => {
fmt_function(f, &fun.to_string(), false, args, true)?;
if let Some(nt) = null_treatment {
write!(f, "{}", nt)?;
}
if !partition_by.is_empty() {
write!(f, " PARTITION BY [{}]", expr_vec_fmt!(partition_by))?;
}
if !order_by.is_empty() {
write!(f, " ORDER BY [{}]", expr_vec_fmt!(order_by))?;
}
write!(
f,
" {} BETWEEN {} AND {}",
window_frame.units, window_frame.start_bound, window_frame.end_bound
)?;
Ok(())
}
Expr::AggregateFunction(AggregateFunction {
func,
distinct,
ref args,
filter,
order_by,
null_treatment,
..
}) => {
fmt_function(f, func.name(), *distinct, args, true)?;
if let Some(nt) = null_treatment {
write!(f, " {}", nt)?;
}
if let Some(fe) = filter {
write!(f, " FILTER (WHERE {fe})")?;
}
if let Some(ob) = order_by {
write!(f, " ORDER BY [{}]", expr_vec_fmt!(ob))?;
}
Ok(())
}
Expr::Between(Between {
expr,
negated,
low,
high,
}) => {
if *negated {
write!(f, "{expr} NOT BETWEEN {low} AND {high}")
} else {
write!(f, "{expr} BETWEEN {low} AND {high}")
}
}
Expr::Like(Like {
negated,
expr,
pattern,
escape_char,
case_insensitive,
}) => {
write!(f, "{expr}")?;
let op_name = if *case_insensitive { "ILIKE" } else { "LIKE" };
if *negated {
write!(f, " NOT")?;
}
if let Some(char) = escape_char {
write!(f, " {op_name} {pattern} ESCAPE '{char}'")
} else {
write!(f, " {op_name} {pattern}")
}
}
Expr::SimilarTo(Like {
negated,
expr,
pattern,
escape_char,
case_insensitive: _,
}) => {
write!(f, "{expr}")?;
if *negated {
write!(f, " NOT")?;
}
if let Some(char) = escape_char {
write!(f, " SIMILAR TO {pattern} ESCAPE '{char}'")
} else {
write!(f, " SIMILAR TO {pattern}")
}
}
Expr::InList(InList {
expr,
list,
negated,
}) => {
if *negated {
write!(f, "{expr} NOT IN ([{}])", expr_vec_fmt!(list))
} else {
write!(f, "{expr} IN ([{}])", expr_vec_fmt!(list))
}
}
Expr::Wildcard { qualifier } => match qualifier {
Some(qualifier) => write!(f, "{qualifier}.*"),
None => write!(f, "*"),
},
Expr::GroupingSet(grouping_sets) => match grouping_sets {
GroupingSet::Rollup(exprs) => {
// ROLLUP (c0, c1, c2)
write!(f, "ROLLUP ({})", expr_vec_fmt!(exprs))
}
GroupingSet::Cube(exprs) => {
// CUBE (c0, c1, c2)
write!(f, "CUBE ({})", expr_vec_fmt!(exprs))
}
GroupingSet::GroupingSets(lists_of_exprs) => {
// GROUPING SETS ((c0), (c1, c2), (c3, c4))
write!(
f,
"GROUPING SETS ({})",
lists_of_exprs
.iter()
.map(|exprs| format!("({})", expr_vec_fmt!(exprs)))
.collect::<Vec<String>>()
.join(", ")
)
}
},
Expr::Placeholder(Placeholder { id, .. }) => write!(f, "{id}"),
Expr::Unnest(Unnest { expr }) => {
write!(f, "UNNEST({expr:?})")
}
}
}
}
fn fmt_function(
f: &mut fmt::Formatter,
fun: &str,
distinct: bool,
args: &[Expr],
display: bool,
) -> fmt::Result {
let args: Vec<String> = match display {
true => args.iter().map(|arg| format!("{arg}")).collect(),
false => args.iter().map(|arg| format!("{arg:?}")).collect(),
};
// let args: Vec<String> = args.iter().map(|arg| format!("{:?}", arg)).collect();
let distinct_str = match distinct {
true => "DISTINCT ",
false => "",
};
write!(f, "{}({}{})", fun, distinct_str, args.join(", "))
}
fn write_function_name<W: Write>(
w: &mut W,
fun: &str,
distinct: bool,
args: &[Expr],
) -> Result<()> {
write!(w, "{}(", fun)?;
if distinct {
w.write_str("DISTINCT ")?;
}
write_names_join(w, args, ",")?;
w.write_str(")")?;
Ok(())
}
/// Returns a readable name of an expression based on the input schema.
/// This function recursively transverses the expression for names such as "CAST(a > 2)".
pub(crate) fn create_name(e: &Expr) -> Result<String> {
let mut s = String::new();
write_name(&mut s, e)?;
Ok(s)
}
fn write_name<W: Write>(w: &mut W, e: &Expr) -> Result<()> {
match e {
Expr::Alias(Alias { name, .. }) => write!(w, "{}", name)?,
Expr::Column(c) => write!(w, "{}", c.flat_name())?,
Expr::OuterReferenceColumn(_, c) => write!(w, "outer_ref({})", c.flat_name())?,
Expr::ScalarVariable(_, variable_names) => {
write!(w, "{}", variable_names.join("."))?
}
Expr::Literal(value) => write!(w, "{value:?}")?,
Expr::BinaryExpr(binary_expr) => {
write_name(w, binary_expr.left.as_ref())?;
write!(w, " {} ", binary_expr.op)?;
write_name(w, binary_expr.right.as_ref())?;
}
Expr::Like(Like {
negated,
expr,
pattern,
escape_char,
case_insensitive,
}) => {
write!(
w,
"{} {}{} {}",
expr,
if *negated { "NOT " } else { "" },
if *case_insensitive { "ILIKE" } else { "LIKE" },
pattern,
)?;
if let Some(char) = escape_char {
write!(w, " CHAR '{char}'")?;
}
}
Expr::SimilarTo(Like {
negated,
expr,
pattern,
escape_char,
case_insensitive: _,
}) => {
write!(
w,
"{} {} {}",
expr,
if *negated {
"NOT SIMILAR TO"
} else {
"SIMILAR TO"
},
pattern,
)?;
if let Some(char) = escape_char {
write!(w, " CHAR '{char}'")?;
}
}
Expr::Case(case) => {
write!(w, "CASE ")?;
if let Some(e) = &case.expr {
write_name(w, e)?;
w.write_str(" ")?;
}
for (when, then) in &case.when_then_expr {
w.write_str("WHEN ")?;
write_name(w, when)?;
w.write_str(" THEN ")?;
write_name(w, then)?;
w.write_str(" ")?;
}
if let Some(e) = &case.else_expr {
w.write_str("ELSE ")?;
write_name(w, e)?;
w.write_str(" ")?;
}
w.write_str("END")?;
}
Expr::Cast(Cast { expr, .. }) => {
// CAST does not change the expression name
write_name(w, expr)?;
}
Expr::TryCast(TryCast { expr, .. }) => {
// CAST does not change the expression name
write_name(w, expr)?;
}
Expr::Not(expr) => {
w.write_str("NOT ")?;
write_name(w, expr)?;
}
Expr::Negative(expr) => {
w.write_str("(- ")?;
write_name(w, expr)?;
w.write_str(")")?;
}
Expr::IsNull(expr) => {
write_name(w, expr)?;
w.write_str(" IS NULL")?;
}
Expr::IsNotNull(expr) => {
write_name(w, expr)?;
w.write_str(" IS NOT NULL")?;
}
Expr::IsTrue(expr) => {
write_name(w, expr)?;
w.write_str(" IS TRUE")?;
}
Expr::IsFalse(expr) => {
write_name(w, expr)?;
w.write_str(" IS FALSE")?;
}
Expr::IsUnknown(expr) => {
write_name(w, expr)?;
w.write_str(" IS UNKNOWN")?;
}
Expr::IsNotTrue(expr) => {
write_name(w, expr)?;
w.write_str(" IS NOT TRUE")?;
}
Expr::IsNotFalse(expr) => {
write_name(w, expr)?;
w.write_str(" IS NOT FALSE")?;
}
Expr::IsNotUnknown(expr) => {
write_name(w, expr)?;
w.write_str(" IS NOT UNKNOWN")?;
}
Expr::Exists(Exists { negated: true, .. }) => w.write_str("NOT EXISTS")?,
Expr::Exists(Exists { negated: false, .. }) => w.write_str("EXISTS")?,
Expr::InSubquery(InSubquery { negated: true, .. }) => w.write_str("NOT IN")?,
Expr::InSubquery(InSubquery { negated: false, .. }) => w.write_str("IN")?,
Expr::ScalarSubquery(subquery) => {
w.write_str(subquery.subquery.schema().field(0).name().as_str())?;
}
Expr::Unnest(Unnest { expr }) => {
w.write_str("unnest(")?;
write_name(w, expr)?;
w.write_str(")")?;
}
Expr::ScalarFunction(fun) => {
w.write_str(fun.func.display_name(&fun.args)?.as_str())?;
}
Expr::WindowFunction(WindowFunction {
fun,
args,
window_frame,
partition_by,
order_by,
null_treatment,
}) => {
write_function_name(w, &fun.to_string(), false, args)?;
if let Some(nt) = null_treatment {
w.write_str(" ")?;
write!(w, "{}", nt)?;
}
if !partition_by.is_empty() {
w.write_str(" ")?;
write!(w, "PARTITION BY [{}]", expr_vec_fmt!(partition_by))?;
}
if !order_by.is_empty() {
w.write_str(" ")?;
write!(w, "ORDER BY [{}]", expr_vec_fmt!(order_by))?;
}
w.write_str(" ")?;
write!(w, "{window_frame}")?;
}
Expr::AggregateFunction(AggregateFunction {
func,
distinct,
args,
filter,
order_by,
null_treatment,
}) => {
write_function_name(w, func.name(), *distinct, args)?;
if let Some(fe) = filter {
write!(w, " FILTER (WHERE {fe})")?;
};
if let Some(order_by) = order_by {
write!(w, " ORDER BY [{}]", expr_vec_fmt!(order_by))?;
};
if let Some(nt) = null_treatment {
write!(w, " {}", nt)?;
}
}
Expr::GroupingSet(grouping_set) => match grouping_set {
GroupingSet::Rollup(exprs) => {
write!(w, "ROLLUP (")?;
write_names(w, exprs.as_slice())?;
write!(w, ")")?;
}
GroupingSet::Cube(exprs) => {
write!(w, "CUBE (")?;
write_names(w, exprs.as_slice())?;
write!(w, ")")?;
}
GroupingSet::GroupingSets(lists_of_exprs) => {
write!(w, "GROUPING SETS (")?;
for (i, exprs) in lists_of_exprs.iter().enumerate() {
if i != 0 {
write!(w, ", ")?;
}
write!(w, "(")?;
write_names(w, exprs.as_slice())?;
write!(w, ")")?;
}
write!(w, ")")?;
}
},
Expr::InList(InList {
expr,
list,
negated,
}) => {
write_name(w, expr)?;
let list = list.iter().map(create_name);
if *negated {
write!(w, " NOT IN ({list:?})")?;
} else {
write!(w, " IN ({list:?})")?;
}
}
Expr::Between(Between {
expr,
negated,
low,
high,
}) => {
write_name(w, expr)?;
if *negated {
write!(w, " NOT BETWEEN ")?;
} else {
write!(w, " BETWEEN ")?;
}
write_name(w, low)?;
write!(w, " AND ")?;
write_name(w, high)?;
}
Expr::Sort { .. } => {
return internal_err!("Create name does not support sort expression")
}
Expr::Wildcard { qualifier } => match qualifier {
Some(qualifier) => {
return internal_err!(
"Create name does not support qualified wildcard, got {qualifier}"
)
}
None => write!(w, "*")?,
},
Expr::Placeholder(Placeholder { id, .. }) => write!(w, "{}", id)?,
};
Ok(())
}
fn write_names<W: Write>(w: &mut W, exprs: &[Expr]) -> Result<()> {
exprs.iter().try_for_each(|e| write_name(w, e))
}
fn write_names_join<W: Write>(w: &mut W, exprs: &[Expr], sep: &str) -> Result<()> {
let mut iter = exprs.iter();
if let Some(first_arg) = iter.next() {
write_name(w, first_arg)?;
}
for a in iter {
w.write_str(sep)?;
write_name(w, a)?;
}
Ok(())
}
pub fn create_function_physical_name(
fun: &str,
distinct: bool,
args: &[Expr],
order_by: Option<&Vec<Expr>>,
) -> Result<String> {
let names: Vec<String> = args
.iter()
.map(|e| create_physical_name(e, false))
.collect::<Result<_>>()?;
let distinct_str = match distinct {
true => "DISTINCT ",
false => "",
};
let phys_name = format!("{}({}{})", fun, distinct_str, names.join(","));
Ok(order_by
.map(|order_by| format!("{} ORDER BY [{}]", phys_name, expr_vec_fmt!(order_by)))
.unwrap_or(phys_name))
}
pub fn physical_name(e: &Expr) -> Result<String> {
create_physical_name(e, true)
}
fn create_physical_name(e: &Expr, is_first_expr: bool) -> Result<String> {
match e {
Expr::Unnest(_) => {
internal_err!(
"Expr::Unnest should have been converted to LogicalPlan::Unnest"
)
}
Expr::Column(c) => {
if is_first_expr {
Ok(c.name.clone())
} else {
Ok(c.flat_name())
}
}
Expr::Alias(Alias { name, .. }) => Ok(name.clone()),
Expr::ScalarVariable(_, variable_names) => Ok(variable_names.join(".")),
Expr::Literal(value) => Ok(format!("{value:?}")),
Expr::BinaryExpr(BinaryExpr { left, op, right }) => {
let left = create_physical_name(left, false)?;
let right = create_physical_name(right, false)?;
Ok(format!("{left} {op} {right}"))
}
Expr::Case(case) => {
let mut name = "CASE ".to_string();
if let Some(e) = &case.expr {
let _ = write!(name, "{} ", create_physical_name(e, false)?);
}
for (w, t) in &case.when_then_expr {
let _ = write!(
name,
"WHEN {} THEN {} ",
create_physical_name(w, false)?,
create_physical_name(t, false)?
);
}
if let Some(e) = &case.else_expr {
let _ = write!(name, "ELSE {} ", create_physical_name(e, false)?);
}
name += "END";
Ok(name)
}
Expr::Cast(Cast { expr, .. }) => {
// CAST does not change the expression name
create_physical_name(expr, false)
}
Expr::TryCast(TryCast { expr, .. }) => {
// CAST does not change the expression name
create_physical_name(expr, false)
}
Expr::Not(expr) => {
let expr = create_physical_name(expr, false)?;
Ok(format!("NOT {expr}"))
}
Expr::Negative(expr) => {
let expr = create_physical_name(expr, false)?;
Ok(format!("(- {expr})"))
}
Expr::IsNull(expr) => {
let expr = create_physical_name(expr, false)?;
Ok(format!("{expr} IS NULL"))
}
Expr::IsNotNull(expr) => {
let expr = create_physical_name(expr, false)?;
Ok(format!("{expr} IS NOT NULL"))
}
Expr::IsTrue(expr) => {
let expr = create_physical_name(expr, false)?;
Ok(format!("{expr} IS TRUE"))
}
Expr::IsFalse(expr) => {
let expr = create_physical_name(expr, false)?;
Ok(format!("{expr} IS FALSE"))
}
Expr::IsUnknown(expr) => {
let expr = create_physical_name(expr, false)?;
Ok(format!("{expr} IS UNKNOWN"))
}
Expr::IsNotTrue(expr) => {
let expr = create_physical_name(expr, false)?;
Ok(format!("{expr} IS NOT TRUE"))
}
Expr::IsNotFalse(expr) => {
let expr = create_physical_name(expr, false)?;
Ok(format!("{expr} IS NOT FALSE"))
}
Expr::IsNotUnknown(expr) => {
let expr = create_physical_name(expr, false)?;
Ok(format!("{expr} IS NOT UNKNOWN"))
}
Expr::ScalarFunction(fun) => fun.func.display_name(&fun.args),
Expr::WindowFunction(WindowFunction {
fun,
args,
order_by,
..
}) => {
create_function_physical_name(&fun.to_string(), false, args, Some(order_by))
}
Expr::AggregateFunction(AggregateFunction {
func,
distinct,
args,
filter: _,
order_by,
null_treatment: _,
}) => {
create_function_physical_name(func.name(), *distinct, args, order_by.as_ref())
}
Expr::GroupingSet(grouping_set) => match grouping_set {
GroupingSet::Rollup(exprs) => Ok(format!(
"ROLLUP ({})",
exprs
.iter()
.map(|e| create_physical_name(e, false))
.collect::<Result<Vec<_>>>()?
.join(", ")
)),
GroupingSet::Cube(exprs) => Ok(format!(
"CUBE ({})",
exprs
.iter()
.map(|e| create_physical_name(e, false))
.collect::<Result<Vec<_>>>()?
.join(", ")
)),
GroupingSet::GroupingSets(lists_of_exprs) => {
let mut strings = vec![];
for exprs in lists_of_exprs {
let exprs_str = exprs
.iter()
.map(|e| create_physical_name(e, false))
.collect::<Result<Vec<_>>>()?
.join(", ");
strings.push(format!("({exprs_str})"));
}
Ok(format!("GROUPING SETS ({})", strings.join(", ")))
}
},
Expr::InList(InList {
expr,
list,
negated,
}) => {
let expr = create_physical_name(expr, false)?;
let list = list.iter().map(|expr| create_physical_name(expr, false));
if *negated {
Ok(format!("{expr} NOT IN ({list:?})"))
} else {
Ok(format!("{expr} IN ({list:?})"))
}
}
Expr::Exists { .. } => {
not_impl_err!("EXISTS is not yet supported in the physical plan")
}
Expr::InSubquery(_) => {
not_impl_err!("IN subquery is not yet supported in the physical plan")
}
Expr::ScalarSubquery(_) => {
not_impl_err!("Scalar subqueries are not yet supported in the physical plan")
}
Expr::Between(Between {
expr,
negated,
low,
high,
}) => {
let expr = create_physical_name(expr, false)?;
let low = create_physical_name(low, false)?;
let high = create_physical_name(high, false)?;
if *negated {
Ok(format!("{expr} NOT BETWEEN {low} AND {high}"))
} else {
Ok(format!("{expr} BETWEEN {low} AND {high}"))
}
}
Expr::Like(Like {
negated,
expr,
pattern,
escape_char,
case_insensitive,
}) => {
let expr = create_physical_name(expr, false)?;
let pattern = create_physical_name(pattern, false)?;
let op_name = if *case_insensitive { "ILIKE" } else { "LIKE" };
let escape = if let Some(char) = escape_char {
format!("CHAR '{char}'")
} else {
"".to_string()
};
if *negated {
Ok(format!("{expr} NOT {op_name} {pattern}{escape}"))
} else {
Ok(format!("{expr} {op_name} {pattern}{escape}"))
}
}
Expr::SimilarTo(Like {
negated,
expr,
pattern,
escape_char,
case_insensitive: _,
}) => {
let expr = create_physical_name(expr, false)?;
let pattern = create_physical_name(pattern, false)?;
let escape = if let Some(char) = escape_char {
format!("CHAR '{char}'")
} else {
"".to_string()
};
if *negated {
Ok(format!("{expr} NOT SIMILAR TO {pattern}{escape}"))
} else {
Ok(format!("{expr} SIMILAR TO {pattern}{escape}"))
}
}
Expr::Sort { .. } => {
internal_err!("Create physical name does not support sort expression")
}
Expr::Wildcard { .. } => {
internal_err!("Create physical name does not support wildcard")
}
Expr::Placeholder(_) => {
internal_err!("Create physical name does not support placeholder")
}
Expr::OuterReferenceColumn(_, _) => {
internal_err!("Create physical name does not support OuterReferenceColumn")
}
}
}
#[cfg(test)]
mod test {
use crate::expr_fn::col;
use crate::{case, lit, ColumnarValue, ScalarUDF, ScalarUDFImpl, Volatility};
use std::any::Any;
#[test]
fn format_case_when() -> Result<()> {
let expr = case(col("a"))
.when(lit(1), lit(true))
.when(lit(0), lit(false))
.otherwise(lit(ScalarValue::Null))?;
let expected = "CASE a WHEN Int32(1) THEN Boolean(true) WHEN Int32(0) THEN Boolean(false) ELSE NULL END";
assert_eq!(expected, expr.canonical_name());
assert_eq!(expected, format!("{expr}"));
assert_eq!(expected, expr.display_name()?);
Ok(())
}
#[test]
fn format_cast() -> Result<()> {
let expr = Expr::Cast(Cast {
expr: Box::new(Expr::Literal(ScalarValue::Float32(Some(1.23)))),
data_type: DataType::Utf8,
});
let expected_canonical = "CAST(Float32(1.23) AS Utf8)";
assert_eq!(expected_canonical, expr.canonical_name());
assert_eq!(expected_canonical, format!("{expr}"));
// note that CAST intentionally has a name that is different from its `Display`
// representation. CAST does not change the name of expressions.
assert_eq!("Float32(1.23)", expr.display_name()?);
Ok(())
}
#[test]
fn test_partial_ord() {
// Test validates that partial ord is defined for Expr using hashes, not
// intended to exhaustively test all possibilities
let exp1 = col("a") + lit(1);
let exp2 = col("a") + lit(2);
let exp3 = !(col("a") + lit(2));
// Since comparisons are done using hash value of the expression
// expr < expr2 may return false, or true. There is no guaranteed result.
// The only guarantee is "<" operator should have the opposite result of ">=" operator
let greater_or_equal = exp1 >= exp2;
assert_eq!(exp1 < exp2, !greater_or_equal);
let greater_or_equal = exp3 >= exp2;
assert_eq!(exp3 < exp2, !greater_or_equal);
}
#[test]
fn test_collect_expr() -> Result<()> {
// single column
{
let expr = &Expr::Cast(Cast::new(Box::new(col("a")), DataType::Float64));
let columns = expr.column_refs();
assert_eq!(1, columns.len());
assert!(columns.contains(&Column::from_name("a")));
}
// multiple columns
{
let expr = col("a") + col("b") + lit(1);
let columns = expr.column_refs();
assert_eq!(2, columns.len());
assert!(columns.contains(&Column::from_name("a")));
assert!(columns.contains(&Column::from_name("b")));
}
Ok(())
}
#[test]
fn test_logical_ops() {
assert_eq!(
format!("{}", lit(1u32).eq(lit(2u32))),
"UInt32(1) = UInt32(2)"
);
assert_eq!(
format!("{}", lit(1u32).not_eq(lit(2u32))),
"UInt32(1) != UInt32(2)"
);
assert_eq!(
format!("{}", lit(1u32).gt(lit(2u32))),
"UInt32(1) > UInt32(2)"
);
assert_eq!(
format!("{}", lit(1u32).gt_eq(lit(2u32))),
"UInt32(1) >= UInt32(2)"
);
assert_eq!(
format!("{}", lit(1u32).lt(lit(2u32))),
"UInt32(1) < UInt32(2)"
);
assert_eq!(
format!("{}", lit(1u32).lt_eq(lit(2u32))),
"UInt32(1) <= UInt32(2)"
);
assert_eq!(
format!("{}", lit(1u32).and(lit(2u32))),
"UInt32(1) AND UInt32(2)"
);
assert_eq!(
format!("{}", lit(1u32).or(lit(2u32))),
"UInt32(1) OR UInt32(2)"
);
}
#[test]
fn test_is_volatile_scalar_func() {
// UDF
#[derive(Debug)]
struct TestScalarUDF {
signature: Signature,
}
impl ScalarUDFImpl for TestScalarUDF {
fn as_any(&self) -> &dyn Any {
self
}
fn name(&self) -> &str {
"TestScalarUDF"
}
fn signature(&self) -> &Signature {
&self.signature
}
fn return_type(&self, _arg_types: &[DataType]) -> Result<DataType> {
Ok(DataType::Utf8)
}
fn invoke(&self, _args: &[ColumnarValue]) -> Result<ColumnarValue> {
Ok(ColumnarValue::Scalar(ScalarValue::from("a")))
}
}
let udf = Arc::new(ScalarUDF::from(TestScalarUDF {
signature: Signature::uniform(1, vec![DataType::Float32], Volatility::Stable),
}));
assert_ne!(udf.signature().volatility, Volatility::Volatile);
let udf = Arc::new(ScalarUDF::from(TestScalarUDF {
signature: Signature::uniform(
1,
vec![DataType::Float32],
Volatility::Volatile,
),
}));
assert_eq!(udf.signature().volatility, Volatility::Volatile);
}
use super::*;
#[test]
fn test_first_value_return_type() -> Result<()> {
let fun = find_df_window_func("first_value").unwrap();
let observed = fun.return_type(&[DataType::Utf8], &[true])?;
assert_eq!(DataType::Utf8, observed);
let observed = fun.return_type(&[DataType::UInt64], &[true])?;
assert_eq!(DataType::UInt64, observed);
Ok(())
}
#[test]
fn test_last_value_return_type() -> Result<()> {
let fun = find_df_window_func("last_value").unwrap();
let observed = fun.return_type(&[DataType::Utf8], &[true])?;
assert_eq!(DataType::Utf8, observed);
let observed = fun.return_type(&[DataType::Float64], &[true])?;
assert_eq!(DataType::Float64, observed);
Ok(())
}
#[test]
fn test_lead_return_type() -> Result<()> {
let fun = find_df_window_func("lead").unwrap();
let observed = fun.return_type(&[DataType::Utf8], &[true])?;
assert_eq!(DataType::Utf8, observed);
let observed = fun.return_type(&[DataType::Float64], &[true])?;
assert_eq!(DataType::Float64, observed);
Ok(())
}
#[test]
fn test_lag_return_type() -> Result<()> {
let fun = find_df_window_func("lag").unwrap();
let observed = fun.return_type(&[DataType::Utf8], &[true])?;
assert_eq!(DataType::Utf8, observed);
let observed = fun.return_type(&[DataType::Float64], &[true])?;
assert_eq!(DataType::Float64, observed);
Ok(())
}
#[test]
fn test_nth_value_return_type() -> Result<()> {
let fun = find_df_window_func("nth_value").unwrap();
let observed =
fun.return_type(&[DataType::Utf8, DataType::UInt64], &[true, true])?;
assert_eq!(DataType::Utf8, observed);
let observed =
fun.return_type(&[DataType::Float64, DataType::UInt64], &[true, true])?;
assert_eq!(DataType::Float64, observed);
Ok(())
}
#[test]
fn test_percent_rank_return_type() -> Result<()> {
let fun = find_df_window_func("percent_rank").unwrap();
let observed = fun.return_type(&[], &[])?;
assert_eq!(DataType::Float64, observed);
Ok(())
}
#[test]
fn test_cume_dist_return_type() -> Result<()> {
let fun = find_df_window_func("cume_dist").unwrap();
let observed = fun.return_type(&[], &[])?;
assert_eq!(DataType::Float64, observed);
Ok(())
}
#[test]
fn test_ntile_return_type() -> Result<()> {
let fun = find_df_window_func("ntile").unwrap();
let observed = fun.return_type(&[DataType::Int16], &[true])?;
assert_eq!(DataType::UInt64, observed);
Ok(())
}
#[test]
fn test_window_function_case_insensitive() -> Result<()> {
let names = vec![
"row_number",
"rank",
"dense_rank",
"percent_rank",
"cume_dist",
"ntile",
"lag",
"lead",
"first_value",
"last_value",
"nth_value",
];
for name in names {
let fun = find_df_window_func(name).unwrap();
let fun2 = find_df_window_func(name.to_uppercase().as_str()).unwrap();
assert_eq!(fun, fun2);
if fun.to_string() == "first_value" || fun.to_string() == "last_value" {
assert_eq!(fun.to_string(), name);
} else {
assert_eq!(fun.to_string(), name.to_uppercase());
}
}
Ok(())
}
#[test]
fn test_find_df_window_function() {
assert_eq!(
find_df_window_func("cume_dist"),
Some(WindowFunctionDefinition::BuiltInWindowFunction(
built_in_window_function::BuiltInWindowFunction::CumeDist
))
);
assert_eq!(
find_df_window_func("first_value"),
Some(WindowFunctionDefinition::BuiltInWindowFunction(
built_in_window_function::BuiltInWindowFunction::FirstValue
))
);
assert_eq!(
find_df_window_func("LAST_value"),
Some(WindowFunctionDefinition::BuiltInWindowFunction(
built_in_window_function::BuiltInWindowFunction::LastValue
))
);
assert_eq!(
find_df_window_func("LAG"),
Some(WindowFunctionDefinition::BuiltInWindowFunction(
built_in_window_function::BuiltInWindowFunction::Lag
))
);
assert_eq!(
find_df_window_func("LEAD"),
Some(WindowFunctionDefinition::BuiltInWindowFunction(
built_in_window_function::BuiltInWindowFunction::Lead
))
);
assert_eq!(find_df_window_func("not_exist"), None)
}
}