1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use super::{Between, Expr, Like};
use crate::expr::{
AggregateFunction, Alias, BinaryExpr, Cast, InList, InSubquery, Placeholder,
ScalarFunction, Sort, TryCast, Unnest, WindowFunction,
};
use crate::type_coercion::binary::get_result_type;
use crate::type_coercion::functions::{
data_types_with_aggregate_udf, data_types_with_scalar_udf,
};
use crate::{utils, LogicalPlan, Projection, Subquery, WindowFunctionDefinition};
use arrow::compute::can_cast_types;
use arrow::datatypes::{DataType, Field};
use datafusion_common::{
internal_err, not_impl_err, plan_datafusion_err, plan_err, Column, ExprSchema,
Result, TableReference,
};
use std::collections::HashMap;
use std::sync::Arc;
/// trait to allow expr to typable with respect to a schema
pub trait ExprSchemable {
/// given a schema, return the type of the expr
fn get_type(&self, schema: &dyn ExprSchema) -> Result<DataType>;
/// given a schema, return the nullability of the expr
fn nullable(&self, input_schema: &dyn ExprSchema) -> Result<bool>;
/// given a schema, return the expr's optional metadata
fn metadata(&self, schema: &dyn ExprSchema) -> Result<HashMap<String, String>>;
/// convert to a field with respect to a schema
fn to_field(
&self,
input_schema: &dyn ExprSchema,
) -> Result<(Option<TableReference>, Arc<Field>)>;
/// cast to a type with respect to a schema
fn cast_to(self, cast_to_type: &DataType, schema: &dyn ExprSchema) -> Result<Expr>;
/// given a schema, return the type and nullability of the expr
fn data_type_and_nullable(&self, schema: &dyn ExprSchema)
-> Result<(DataType, bool)>;
}
impl ExprSchemable for Expr {
/// Returns the [arrow::datatypes::DataType] of the expression
/// based on [ExprSchema]
///
/// Note: [`DFSchema`] implements [ExprSchema].
///
/// [`DFSchema`]: datafusion_common::DFSchema
///
/// # Examples
///
/// Get the type of an expression that adds 2 columns. Adding an Int32
/// and Float32 results in Float32 type
///
/// ```
/// # use arrow::datatypes::{DataType, Field};
/// # use datafusion_common::DFSchema;
/// # use datafusion_expr::{col, ExprSchemable};
/// # use std::collections::HashMap;
///
/// fn main() {
/// let expr = col("c1") + col("c2");
/// let schema = DFSchema::from_unqualified_fields(
/// vec![
/// Field::new("c1", DataType::Int32, true),
/// Field::new("c2", DataType::Float32, true),
/// ].into(),
/// HashMap::new(),
/// ).unwrap();
/// assert_eq!("Float32", format!("{}", expr.get_type(&schema).unwrap()));
/// }
/// ```
///
/// # Errors
///
/// This function errors when it is not possible to compute its
/// [arrow::datatypes::DataType]. This happens when e.g. the
/// expression refers to a column that does not exist in the
/// schema, or when the expression is incorrectly typed
/// (e.g. `[utf8] + [bool]`).
fn get_type(&self, schema: &dyn ExprSchema) -> Result<DataType> {
match self {
Expr::Alias(Alias { expr, name, .. }) => match &**expr {
Expr::Placeholder(Placeholder { data_type, .. }) => match &data_type {
None => schema.data_type(&Column::from_name(name)).cloned(),
Some(dt) => Ok(dt.clone()),
},
_ => expr.get_type(schema),
},
Expr::Sort(Sort { expr, .. }) | Expr::Negative(expr) => expr.get_type(schema),
Expr::Column(c) => Ok(schema.data_type(c)?.clone()),
Expr::OuterReferenceColumn(ty, _) => Ok(ty.clone()),
Expr::ScalarVariable(ty, _) => Ok(ty.clone()),
Expr::Literal(l) => Ok(l.data_type()),
Expr::Case(case) => {
for (_, then_expr) in &case.when_then_expr {
let then_type = then_expr.get_type(schema)?;
if !then_type.is_null() {
return Ok(then_type);
}
}
case.else_expr
.as_ref()
.map_or(Ok(DataType::Null), |e| e.get_type(schema))
}
Expr::Cast(Cast { data_type, .. })
| Expr::TryCast(TryCast { data_type, .. }) => Ok(data_type.clone()),
Expr::Unnest(Unnest { expr }) => {
let arg_data_type = expr.get_type(schema)?;
// Unnest's output type is the inner type of the list
match arg_data_type {
DataType::List(field)
| DataType::LargeList(field)
| DataType::FixedSizeList(field, _) => Ok(field.data_type().clone()),
DataType::Struct(_) => Ok(arg_data_type),
DataType::Null => {
not_impl_err!("unnest() does not support null yet")
}
_ => {
plan_err!(
"unnest() can only be applied to array, struct and null"
)
}
}
}
Expr::ScalarFunction(ScalarFunction { func, args }) => {
let arg_data_types = args
.iter()
.map(|e| e.get_type(schema))
.collect::<Result<Vec<_>>>()?;
// verify that function is invoked with correct number and type of arguments as defined in `TypeSignature`
data_types_with_scalar_udf(&arg_data_types, func).map_err(|err| {
plan_datafusion_err!(
"{} {}",
err,
utils::generate_signature_error_msg(
func.name(),
func.signature().clone(),
&arg_data_types,
)
)
})?;
// perform additional function arguments validation (due to limited
// expressiveness of `TypeSignature`), then infer return type
Ok(func.return_type_from_exprs(args, schema, &arg_data_types)?)
}
Expr::WindowFunction(WindowFunction { fun, args, .. }) => {
let data_types = args
.iter()
.map(|e| e.get_type(schema))
.collect::<Result<Vec<_>>>()?;
let nullability = args
.iter()
.map(|e| e.nullable(schema))
.collect::<Result<Vec<_>>>()?;
match fun {
WindowFunctionDefinition::AggregateUDF(udf) => {
let new_types = data_types_with_aggregate_udf(&data_types, udf)
.map_err(|err| {
plan_datafusion_err!(
"{} {}",
err,
utils::generate_signature_error_msg(
fun.name(),
fun.signature().clone(),
&data_types
)
)
})?;
Ok(fun.return_type(&new_types, &nullability)?)
}
_ => fun.return_type(&data_types, &nullability),
}
}
Expr::AggregateFunction(AggregateFunction { func, args, .. }) => {
let data_types = args
.iter()
.map(|e| e.get_type(schema))
.collect::<Result<Vec<_>>>()?;
let new_types = data_types_with_aggregate_udf(&data_types, func)
.map_err(|err| {
plan_datafusion_err!(
"{} {}",
err,
utils::generate_signature_error_msg(
func.name(),
func.signature().clone(),
&data_types
)
)
})?;
Ok(func.return_type(&new_types)?)
}
Expr::Not(_)
| Expr::IsNull(_)
| Expr::Exists { .. }
| Expr::InSubquery(_)
| Expr::Between { .. }
| Expr::InList { .. }
| Expr::IsNotNull(_)
| Expr::IsTrue(_)
| Expr::IsFalse(_)
| Expr::IsUnknown(_)
| Expr::IsNotTrue(_)
| Expr::IsNotFalse(_)
| Expr::IsNotUnknown(_) => Ok(DataType::Boolean),
Expr::ScalarSubquery(subquery) => {
Ok(subquery.subquery.schema().field(0).data_type().clone())
}
Expr::BinaryExpr(BinaryExpr {
ref left,
ref right,
ref op,
}) => get_result_type(&left.get_type(schema)?, op, &right.get_type(schema)?),
Expr::Like { .. } | Expr::SimilarTo { .. } => Ok(DataType::Boolean),
Expr::Placeholder(Placeholder { data_type, .. }) => {
data_type.clone().ok_or_else(|| {
plan_datafusion_err!(
"Placeholder type could not be resolved. Make sure that the \
placeholder is bound to a concrete type, e.g. by providing \
parameter values."
)
})
}
Expr::Wildcard { qualifier } => {
// Wildcard do not really have a type and do not appear in projections
match qualifier {
Some(_) => internal_err!("QualifiedWildcard expressions are not valid in a logical query plan"),
None => Ok(DataType::Null)
}
}
Expr::GroupingSet(_) => {
// grouping sets do not really have a type and do not appear in projections
Ok(DataType::Null)
}
}
}
/// Returns the nullability of the expression based on [ExprSchema].
///
/// Note: [`DFSchema`] implements [ExprSchema].
///
/// [`DFSchema`]: datafusion_common::DFSchema
///
/// # Errors
///
/// This function errors when it is not possible to compute its
/// nullability. This happens when the expression refers to a
/// column that does not exist in the schema.
fn nullable(&self, input_schema: &dyn ExprSchema) -> Result<bool> {
match self {
Expr::Alias(Alias { expr, .. })
| Expr::Not(expr)
| Expr::Negative(expr)
| Expr::Sort(Sort { expr, .. }) => expr.nullable(input_schema),
Expr::InList(InList { expr, list, .. }) => {
// Avoid inspecting too many expressions.
const MAX_INSPECT_LIMIT: usize = 6;
// Stop if a nullable expression is found or an error occurs.
let has_nullable = std::iter::once(expr.as_ref())
.chain(list)
.take(MAX_INSPECT_LIMIT)
.find_map(|e| {
e.nullable(input_schema)
.map(|nullable| if nullable { Some(()) } else { None })
.transpose()
})
.transpose()?;
Ok(match has_nullable {
// If a nullable subexpression is found, the result may also be nullable.
Some(_) => true,
// If the list is too long, we assume it is nullable.
None if list.len() + 1 > MAX_INSPECT_LIMIT => true,
// All the subexpressions are non-nullable, so the result must be non-nullable.
_ => false,
})
}
Expr::Between(Between {
expr, low, high, ..
}) => Ok(expr.nullable(input_schema)?
|| low.nullable(input_schema)?
|| high.nullable(input_schema)?),
Expr::Column(c) => input_schema.nullable(c),
Expr::OuterReferenceColumn(_, _) => Ok(true),
Expr::Literal(value) => Ok(value.is_null()),
Expr::Case(case) => {
// this expression is nullable if any of the input expressions are nullable
let then_nullable = case
.when_then_expr
.iter()
.map(|(_, t)| t.nullable(input_schema))
.collect::<Result<Vec<_>>>()?;
if then_nullable.contains(&true) {
Ok(true)
} else if let Some(e) = &case.else_expr {
e.nullable(input_schema)
} else {
// CASE produces NULL if there is no `else` expr
// (aka when none of the `when_then_exprs` match)
Ok(true)
}
}
Expr::Cast(Cast { expr, .. }) => expr.nullable(input_schema),
Expr::AggregateFunction(AggregateFunction { func, .. }) => {
// TODO: UDF should be able to customize nullability
if func.name() == "count" {
Ok(false)
} else {
Ok(true)
}
}
Expr::ScalarVariable(_, _)
| Expr::TryCast { .. }
| Expr::ScalarFunction(..)
| Expr::WindowFunction { .. }
| Expr::Unnest(_)
| Expr::Placeholder(_) => Ok(true),
Expr::IsNull(_)
| Expr::IsNotNull(_)
| Expr::IsTrue(_)
| Expr::IsFalse(_)
| Expr::IsUnknown(_)
| Expr::IsNotTrue(_)
| Expr::IsNotFalse(_)
| Expr::IsNotUnknown(_)
| Expr::Exists { .. } => Ok(false),
Expr::InSubquery(InSubquery { expr, .. }) => expr.nullable(input_schema),
Expr::ScalarSubquery(subquery) => {
Ok(subquery.subquery.schema().field(0).is_nullable())
}
Expr::BinaryExpr(BinaryExpr {
ref left,
ref right,
..
}) => Ok(left.nullable(input_schema)? || right.nullable(input_schema)?),
Expr::Like(Like { expr, pattern, .. })
| Expr::SimilarTo(Like { expr, pattern, .. }) => {
Ok(expr.nullable(input_schema)? || pattern.nullable(input_schema)?)
}
Expr::Wildcard { qualifier } => match qualifier {
Some(_) => internal_err!(
"QualifiedWildcard expressions are not valid in a logical query plan"
),
None => Ok(false),
},
Expr::GroupingSet(_) => {
// grouping sets do not really have the concept of nullable and do not appear
// in projections
Ok(true)
}
}
}
fn metadata(&self, schema: &dyn ExprSchema) -> Result<HashMap<String, String>> {
match self {
Expr::Column(c) => Ok(schema.metadata(c)?.clone()),
Expr::Alias(Alias { expr, .. }) => expr.metadata(schema),
_ => Ok(HashMap::new()),
}
}
/// Returns the datatype and nullability of the expression based on [ExprSchema].
///
/// Note: [`DFSchema`] implements [ExprSchema].
///
/// [`DFSchema`]: datafusion_common::DFSchema
///
/// # Errors
///
/// This function errors when it is not possible to compute its
/// datatype or nullability.
fn data_type_and_nullable(
&self,
schema: &dyn ExprSchema,
) -> Result<(DataType, bool)> {
match self {
Expr::Alias(Alias { expr, name, .. }) => match &**expr {
Expr::Placeholder(Placeholder { data_type, .. }) => match &data_type {
None => schema
.data_type_and_nullable(&Column::from_name(name))
.map(|(d, n)| (d.clone(), n)),
Some(dt) => Ok((dt.clone(), expr.nullable(schema)?)),
},
_ => expr.data_type_and_nullable(schema),
},
Expr::Sort(Sort { expr, .. }) | Expr::Negative(expr) => {
expr.data_type_and_nullable(schema)
}
Expr::Column(c) => schema
.data_type_and_nullable(c)
.map(|(d, n)| (d.clone(), n)),
Expr::OuterReferenceColumn(ty, _) => Ok((ty.clone(), true)),
Expr::ScalarVariable(ty, _) => Ok((ty.clone(), true)),
Expr::Literal(l) => Ok((l.data_type(), l.is_null())),
Expr::IsNull(_)
| Expr::IsNotNull(_)
| Expr::IsTrue(_)
| Expr::IsFalse(_)
| Expr::IsUnknown(_)
| Expr::IsNotTrue(_)
| Expr::IsNotFalse(_)
| Expr::IsNotUnknown(_)
| Expr::Exists { .. } => Ok((DataType::Boolean, false)),
Expr::ScalarSubquery(subquery) => Ok((
subquery.subquery.schema().field(0).data_type().clone(),
subquery.subquery.schema().field(0).is_nullable(),
)),
Expr::BinaryExpr(BinaryExpr {
ref left,
ref right,
ref op,
}) => {
let left = left.data_type_and_nullable(schema)?;
let right = right.data_type_and_nullable(schema)?;
Ok((get_result_type(&left.0, op, &right.0)?, left.1 || right.1))
}
_ => Ok((self.get_type(schema)?, self.nullable(schema)?)),
}
}
/// Returns a [arrow::datatypes::Field] compatible with this expression.
///
/// So for example, a projected expression `col(c1) + col(c2)` is
/// placed in an output field **named** col("c1 + c2")
fn to_field(
&self,
input_schema: &dyn ExprSchema,
) -> Result<(Option<TableReference>, Arc<Field>)> {
match self {
Expr::Column(c) => {
let (data_type, nullable) = self.data_type_and_nullable(input_schema)?;
Ok((
c.relation.clone(),
Field::new(&c.name, data_type, nullable)
.with_metadata(self.metadata(input_schema)?)
.into(),
))
}
Expr::Alias(Alias { relation, name, .. }) => {
let (data_type, nullable) = self.data_type_and_nullable(input_schema)?;
Ok((
relation.clone(),
Field::new(name, data_type, nullable)
.with_metadata(self.metadata(input_schema)?)
.into(),
))
}
_ => {
let (data_type, nullable) = self.data_type_and_nullable(input_schema)?;
Ok((
None,
Field::new(self.display_name()?, data_type, nullable)
.with_metadata(self.metadata(input_schema)?)
.into(),
))
}
}
}
/// Wraps this expression in a cast to a target [arrow::datatypes::DataType].
///
/// # Errors
///
/// This function errors when it is impossible to cast the
/// expression to the target [arrow::datatypes::DataType].
fn cast_to(self, cast_to_type: &DataType, schema: &dyn ExprSchema) -> Result<Expr> {
let this_type = self.get_type(schema)?;
if this_type == *cast_to_type {
return Ok(self);
}
// TODO(kszucs): most of the operations do not validate the type correctness
// like all of the binary expressions below. Perhaps Expr should track the
// type of the expression?
if can_cast_types(&this_type, cast_to_type) {
match self {
Expr::ScalarSubquery(subquery) => {
Ok(Expr::ScalarSubquery(cast_subquery(subquery, cast_to_type)?))
}
_ => Ok(Expr::Cast(Cast::new(Box::new(self), cast_to_type.clone()))),
}
} else {
plan_err!("Cannot automatically convert {this_type:?} to {cast_to_type:?}")
}
}
}
/// cast subquery in InSubquery/ScalarSubquery to a given type.
pub fn cast_subquery(subquery: Subquery, cast_to_type: &DataType) -> Result<Subquery> {
if subquery.subquery.schema().field(0).data_type() == cast_to_type {
return Ok(subquery);
}
let plan = subquery.subquery.as_ref();
let new_plan = match plan {
LogicalPlan::Projection(projection) => {
let cast_expr = projection.expr[0]
.clone()
.cast_to(cast_to_type, projection.input.schema())?;
LogicalPlan::Projection(Projection::try_new(
vec![cast_expr],
Arc::clone(&projection.input),
)?)
}
_ => {
let cast_expr = Expr::Column(Column::from(plan.schema().qualified_field(0)))
.cast_to(cast_to_type, subquery.subquery.schema())?;
LogicalPlan::Projection(Projection::try_new(
vec![cast_expr],
subquery.subquery,
)?)
}
};
Ok(Subquery {
subquery: Arc::new(new_plan),
outer_ref_columns: subquery.outer_ref_columns,
})
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{col, lit};
use datafusion_common::{DFSchema, ScalarValue};
macro_rules! test_is_expr_nullable {
($EXPR_TYPE:ident) => {{
let expr = lit(ScalarValue::Null).$EXPR_TYPE();
assert!(!expr.nullable(&MockExprSchema::new()).unwrap());
}};
}
#[test]
fn expr_schema_nullability() {
let expr = col("foo").eq(lit(1));
assert!(!expr.nullable(&MockExprSchema::new()).unwrap());
assert!(expr
.nullable(&MockExprSchema::new().with_nullable(true))
.unwrap());
test_is_expr_nullable!(is_null);
test_is_expr_nullable!(is_not_null);
test_is_expr_nullable!(is_true);
test_is_expr_nullable!(is_not_true);
test_is_expr_nullable!(is_false);
test_is_expr_nullable!(is_not_false);
test_is_expr_nullable!(is_unknown);
test_is_expr_nullable!(is_not_unknown);
}
#[test]
fn test_between_nullability() {
let get_schema = |nullable| {
MockExprSchema::new()
.with_data_type(DataType::Int32)
.with_nullable(nullable)
};
let expr = col("foo").between(lit(1), lit(2));
assert!(!expr.nullable(&get_schema(false)).unwrap());
assert!(expr.nullable(&get_schema(true)).unwrap());
let null = lit(ScalarValue::Int32(None));
let expr = col("foo").between(null.clone(), lit(2));
assert!(expr.nullable(&get_schema(false)).unwrap());
let expr = col("foo").between(lit(1), null.clone());
assert!(expr.nullable(&get_schema(false)).unwrap());
let expr = col("foo").between(null.clone(), null);
assert!(expr.nullable(&get_schema(false)).unwrap());
}
#[test]
fn test_inlist_nullability() {
let get_schema = |nullable| {
MockExprSchema::new()
.with_data_type(DataType::Int32)
.with_nullable(nullable)
};
let expr = col("foo").in_list(vec![lit(1); 5], false);
assert!(!expr.nullable(&get_schema(false)).unwrap());
assert!(expr.nullable(&get_schema(true)).unwrap());
// Testing nullable() returns an error.
assert!(expr
.nullable(&get_schema(false).with_error_on_nullable(true))
.is_err());
let null = lit(ScalarValue::Int32(None));
let expr = col("foo").in_list(vec![null, lit(1)], false);
assert!(expr.nullable(&get_schema(false)).unwrap());
// Testing on long list
let expr = col("foo").in_list(vec![lit(1); 6], false);
assert!(expr.nullable(&get_schema(false)).unwrap());
}
#[test]
fn test_like_nullability() {
let get_schema = |nullable| {
MockExprSchema::new()
.with_data_type(DataType::Utf8)
.with_nullable(nullable)
};
let expr = col("foo").like(lit("bar"));
assert!(!expr.nullable(&get_schema(false)).unwrap());
assert!(expr.nullable(&get_schema(true)).unwrap());
let expr = col("foo").like(lit(ScalarValue::Utf8(None)));
assert!(expr.nullable(&get_schema(false)).unwrap());
}
#[test]
fn expr_schema_data_type() {
let expr = col("foo");
assert_eq!(
DataType::Utf8,
expr.get_type(&MockExprSchema::new().with_data_type(DataType::Utf8))
.unwrap()
);
}
#[test]
fn test_expr_metadata() {
let mut meta = HashMap::new();
meta.insert("bar".to_string(), "buzz".to_string());
let expr = col("foo");
let schema = MockExprSchema::new()
.with_data_type(DataType::Int32)
.with_metadata(meta.clone());
// col and alias should be metadata-preserving
assert_eq!(meta, expr.metadata(&schema).unwrap());
assert_eq!(meta, expr.clone().alias("bar").metadata(&schema).unwrap());
// cast should drop input metadata since the type has changed
assert_eq!(
HashMap::new(),
expr.clone()
.cast_to(&DataType::Int64, &schema)
.unwrap()
.metadata(&schema)
.unwrap()
);
let schema = DFSchema::from_unqualified_fields(
vec![Field::new("foo", DataType::Int32, true).with_metadata(meta.clone())]
.into(),
HashMap::new(),
)
.unwrap();
// verify to_field method populates metadata
assert_eq!(&meta, expr.to_field(&schema).unwrap().1.metadata());
}
#[derive(Debug)]
struct MockExprSchema {
nullable: bool,
data_type: DataType,
error_on_nullable: bool,
metadata: HashMap<String, String>,
}
impl MockExprSchema {
fn new() -> Self {
Self {
nullable: false,
data_type: DataType::Null,
error_on_nullable: false,
metadata: HashMap::new(),
}
}
fn with_nullable(mut self, nullable: bool) -> Self {
self.nullable = nullable;
self
}
fn with_data_type(mut self, data_type: DataType) -> Self {
self.data_type = data_type;
self
}
fn with_error_on_nullable(mut self, error_on_nullable: bool) -> Self {
self.error_on_nullable = error_on_nullable;
self
}
fn with_metadata(mut self, metadata: HashMap<String, String>) -> Self {
self.metadata = metadata;
self
}
}
impl ExprSchema for MockExprSchema {
fn nullable(&self, _col: &Column) -> Result<bool> {
if self.error_on_nullable {
internal_err!("nullable error")
} else {
Ok(self.nullable)
}
}
fn data_type(&self, _col: &Column) -> Result<&DataType> {
Ok(&self.data_type)
}
fn metadata(&self, _col: &Column) -> Result<&HashMap<String, String>> {
Ok(&self.metadata)
}
fn data_type_and_nullable(&self, col: &Column) -> Result<(&DataType, bool)> {
Ok((self.data_type(col)?, self.nullable(col)?))
}
}
}