1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! This module defines the interface for logical nodes
use crate::{Expr, LogicalPlan};
use datafusion_common::{DFSchema, DFSchemaRef, Result};
use std::hash::{Hash, Hasher};
use std::{any::Any, collections::HashSet, fmt, sync::Arc};
/// This defines the interface for [`LogicalPlan`] nodes that can be
/// used to extend DataFusion with custom relational operators.
///
/// The [`UserDefinedLogicalNodeCore`] trait is *the recommended way to implement*
/// this trait and avoids having implementing some required boiler plate code.
pub trait UserDefinedLogicalNode: fmt::Debug + Send + Sync {
/// Return a reference to self as Any, to support dynamic downcasting
///
/// Typically this will look like:
///
/// ```
/// # use std::any::Any;
/// # struct Dummy { }
///
/// # impl Dummy {
/// // canonical boiler plate
/// fn as_any(&self) -> &dyn Any {
/// self
/// }
/// # }
/// ```
fn as_any(&self) -> &dyn Any;
/// Return the plan's name.
fn name(&self) -> &str;
/// Return the logical plan's inputs.
fn inputs(&self) -> Vec<&LogicalPlan>;
/// Return the output schema of this logical plan node.
fn schema(&self) -> &DFSchemaRef;
/// Returns all expressions in the current logical plan node. This should
/// not include expressions of any inputs (aka non-recursively).
///
/// These expressions are used for optimizer
/// passes and rewrites. See [`LogicalPlan::expressions`] for more details.
fn expressions(&self) -> Vec<Expr>;
/// A list of output columns (e.g. the names of columns in
/// self.schema()) for which predicates can not be pushed below
/// this node without changing the output.
///
/// By default, this returns all columns and thus prevents any
/// predicates from being pushed below this node.
fn prevent_predicate_push_down_columns(&self) -> HashSet<String> {
// default (safe) is all columns in the schema.
get_all_columns_from_schema(self.schema())
}
/// Write a single line, human readable string to `f` for use in explain plan.
///
/// For example: `TopK: k=10`
fn fmt_for_explain(&self, f: &mut fmt::Formatter) -> fmt::Result;
#[deprecated(since = "39.0.0", note = "use with_exprs_and_inputs instead")]
#[allow(clippy::wrong_self_convention)]
fn from_template(
&self,
exprs: &[Expr],
inputs: &[LogicalPlan],
) -> Arc<dyn UserDefinedLogicalNode> {
self.with_exprs_and_inputs(exprs.to_vec(), inputs.to_vec())
.unwrap()
}
/// Create a new `UserDefinedLogicalNode` with the specified children
/// and expressions. This function is used during optimization
/// when the plan is being rewritten and a new instance of the
/// `UserDefinedLogicalNode` must be created.
///
/// Note that exprs and inputs are in the same order as the result
/// of self.inputs and self.exprs.
///
/// So, `self.with_exprs_and_inputs(exprs, ..).expressions() == exprs
fn with_exprs_and_inputs(
&self,
exprs: Vec<Expr>,
inputs: Vec<LogicalPlan>,
) -> Result<Arc<dyn UserDefinedLogicalNode>>;
/// Returns the necessary input columns for this node required to compute
/// the columns in the output schema
///
/// This is used for projection push-down when DataFusion has determined that
/// only a subset of the output columns of this node are needed by its parents.
/// This API is used to tell DataFusion which, if any, of the input columns are no longer
/// needed.
///
/// Return `None`, the default, if this information can not be determined.
/// Returns `Some(_)` with the column indices for each child of this node that are
/// needed to compute `output_columns`
fn necessary_children_exprs(
&self,
_output_columns: &[usize],
) -> Option<Vec<Vec<usize>>> {
None
}
/// Update the hash `state` with this node requirements from
/// [`Hash`].
///
/// Note: consider using [`UserDefinedLogicalNodeCore`] instead of
/// [`UserDefinedLogicalNode`] directly.
///
/// This method is required to support hashing [`LogicalPlan`]s. To
/// implement it, typically the type implementing
/// [`UserDefinedLogicalNode`] typically implements [`Hash`] and
/// then the following boiler plate is used:
///
/// # Example:
/// ```
/// // User defined node that derives Hash
/// #[derive(Hash, Debug, PartialEq, Eq)]
/// struct MyNode {
/// val: u64
/// }
///
/// // impl UserDefinedLogicalNode {
/// // ...
/// # impl MyNode {
/// // Boiler plate to call the derived Hash impl
/// fn dyn_hash(&self, state: &mut dyn std::hash::Hasher) {
/// use std::hash::Hash;
/// let mut s = state;
/// self.hash(&mut s);
/// }
/// // }
/// # }
/// ```
/// Note: [`UserDefinedLogicalNode`] is not constrained by [`Hash`]
/// directly because it must remain object safe.
fn dyn_hash(&self, state: &mut dyn Hasher);
/// Compare `other`, respecting requirements from [std::cmp::Eq].
///
/// Note: consider using [`UserDefinedLogicalNodeCore`] instead of
/// [`UserDefinedLogicalNode`] directly.
///
/// When `other` has an another type than `self`, then the values
/// are *not* equal.
///
/// This method is required to support Eq on [`LogicalPlan`]s. To
/// implement it, typically the type implementing
/// [`UserDefinedLogicalNode`] typically implements [`Eq`] and
/// then the following boiler plate is used:
///
/// # Example:
/// ```
/// # use datafusion_expr::UserDefinedLogicalNode;
/// // User defined node that derives Eq
/// #[derive(Hash, Debug, PartialEq, Eq)]
/// struct MyNode {
/// val: u64
/// }
///
/// // impl UserDefinedLogicalNode {
/// // ...
/// # impl MyNode {
/// // Boiler plate to call the derived Eq impl
/// fn dyn_eq(&self, other: &dyn UserDefinedLogicalNode) -> bool {
/// match other.as_any().downcast_ref::<Self>() {
/// Some(o) => self == o,
/// None => false,
/// }
/// }
/// // }
/// # }
/// ```
/// Note: [`UserDefinedLogicalNode`] is not constrained by [`Eq`]
/// directly because it must remain object safe.
fn dyn_eq(&self, other: &dyn UserDefinedLogicalNode) -> bool;
}
impl Hash for dyn UserDefinedLogicalNode {
fn hash<H: Hasher>(&self, state: &mut H) {
self.dyn_hash(state);
}
}
impl std::cmp::PartialEq for dyn UserDefinedLogicalNode {
fn eq(&self, other: &Self) -> bool {
self.dyn_eq(other)
}
}
impl Eq for dyn UserDefinedLogicalNode {}
/// This trait facilitates implementation of the [`UserDefinedLogicalNode`].
///
/// See the example in
/// [user_defined_plan.rs](../../tests/user_defined_plan.rs) for an
/// example of how to use this extension API.
pub trait UserDefinedLogicalNodeCore:
fmt::Debug + Eq + Hash + Sized + Send + Sync + 'static
{
/// Return the plan's name.
fn name(&self) -> &str;
/// Return the logical plan's inputs.
fn inputs(&self) -> Vec<&LogicalPlan>;
/// Return the output schema of this logical plan node.
fn schema(&self) -> &DFSchemaRef;
/// Returns all expressions in the current logical plan node. This
/// should not include expressions of any inputs (aka
/// non-recursively). These expressions are used for optimizer
/// passes and rewrites.
fn expressions(&self) -> Vec<Expr>;
/// A list of output columns (e.g. the names of columns in
/// self.schema()) for which predicates can not be pushed below
/// this node without changing the output.
///
/// By default, this returns all columns and thus prevents any
/// predicates from being pushed below this node.
fn prevent_predicate_push_down_columns(&self) -> HashSet<String> {
// default (safe) is all columns in the schema.
get_all_columns_from_schema(self.schema())
}
/// Write a single line, human readable string to `f` for use in explain plan.
///
/// For example: `TopK: k=10`
fn fmt_for_explain(&self, f: &mut fmt::Formatter) -> fmt::Result;
#[deprecated(since = "39.0.0", note = "use with_exprs_and_inputs instead")]
#[allow(clippy::wrong_self_convention)]
fn from_template(&self, exprs: &[Expr], inputs: &[LogicalPlan]) -> Self {
self.with_exprs_and_inputs(exprs.to_vec(), inputs.to_vec())
.unwrap()
}
/// Create a new `UserDefinedLogicalNode` with the specified children
/// and expressions. This function is used during optimization
/// when the plan is being rewritten and a new instance of the
/// `UserDefinedLogicalNode` must be created.
///
/// Note that exprs and inputs are in the same order as the result
/// of self.inputs and self.exprs.
///
/// So, `self.with_exprs_and_inputs(exprs, ..).expressions() == exprs
fn with_exprs_and_inputs(
&self,
exprs: Vec<Expr>,
inputs: Vec<LogicalPlan>,
) -> Result<Self>;
/// Returns the necessary input columns for this node required to compute
/// the columns in the output schema
///
/// This is used for projection push-down when DataFusion has determined that
/// only a subset of the output columns of this node are needed by its parents.
/// This API is used to tell DataFusion which, if any, of the input columns are no longer
/// needed.
///
/// Return `None`, the default, if this information can not be determined.
/// Returns `Some(_)` with the column indices for each child of this node that are
/// needed to compute `output_columns`
fn necessary_children_exprs(
&self,
_output_columns: &[usize],
) -> Option<Vec<Vec<usize>>> {
None
}
}
/// Automatically derive UserDefinedLogicalNode to `UserDefinedLogicalNode`
/// to avoid boiler plate for implementing `as_any`, `Hash` and `PartialEq`
impl<T: UserDefinedLogicalNodeCore> UserDefinedLogicalNode for T {
fn as_any(&self) -> &dyn Any {
self
}
fn name(&self) -> &str {
self.name()
}
fn inputs(&self) -> Vec<&LogicalPlan> {
self.inputs()
}
fn schema(&self) -> &DFSchemaRef {
self.schema()
}
fn expressions(&self) -> Vec<Expr> {
self.expressions()
}
fn prevent_predicate_push_down_columns(&self) -> HashSet<String> {
self.prevent_predicate_push_down_columns()
}
fn fmt_for_explain(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.fmt_for_explain(f)
}
fn with_exprs_and_inputs(
&self,
exprs: Vec<Expr>,
inputs: Vec<LogicalPlan>,
) -> Result<Arc<dyn UserDefinedLogicalNode>> {
Ok(Arc::new(self.with_exprs_and_inputs(exprs, inputs)?))
}
fn necessary_children_exprs(
&self,
output_columns: &[usize],
) -> Option<Vec<Vec<usize>>> {
self.necessary_children_exprs(output_columns)
}
fn dyn_hash(&self, state: &mut dyn Hasher) {
let mut s = state;
self.hash(&mut s);
}
fn dyn_eq(&self, other: &dyn UserDefinedLogicalNode) -> bool {
match other.as_any().downcast_ref::<Self>() {
Some(o) => self == o,
None => false,
}
}
}
fn get_all_columns_from_schema(schema: &DFSchema) -> HashSet<String> {
schema.fields().iter().map(|f| f.name().clone()).collect()
}