1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! [`AggregateUDF`]: User Defined Aggregate Functions
use std::any::Any;
use std::fmt::{self, Debug, Formatter};
use std::hash::{DefaultHasher, Hash, Hasher};
use std::sync::Arc;
use std::vec;
use arrow::datatypes::{DataType, Field};
use datafusion_common::{exec_err, not_impl_err, Result};
use crate::expr::AggregateFunction;
use crate::function::{
AccumulatorArgs, AggregateFunctionSimplification, StateFieldsArgs,
};
use crate::groups_accumulator::GroupsAccumulator;
use crate::utils::format_state_name;
use crate::utils::AggregateOrderSensitivity;
use crate::{Accumulator, Expr};
use crate::{AccumulatorFactoryFunction, ReturnTypeFunction, Signature};
/// Logical representation of a user-defined [aggregate function] (UDAF).
///
/// An aggregate function combines the values from multiple input rows
/// into a single output "aggregate" (summary) row. It is different
/// from a scalar function because it is stateful across batches. User
/// defined aggregate functions can be used as normal SQL aggregate
/// functions (`GROUP BY` clause) as well as window functions (`OVER`
/// clause).
///
/// `AggregateUDF` provides DataFusion the information needed to plan and call
/// aggregate functions, including name, type information, and a factory
/// function to create an [`Accumulator`] instance, to perform the actual
/// aggregation.
///
/// For more information, please see [the examples]:
///
/// 1. For simple use cases, use [`create_udaf`] (examples in [`simple_udaf.rs`]).
///
/// 2. For advanced use cases, use [`AggregateUDFImpl`] which provides full API
/// access (examples in [`advanced_udaf.rs`]).
///
/// # API Note
/// This is a separate struct from `AggregateUDFImpl` to maintain backwards
/// compatibility with the older API.
///
/// [the examples]: https://github.com/apache/datafusion/tree/main/datafusion-examples#single-process
/// [aggregate function]: https://en.wikipedia.org/wiki/Aggregate_function
/// [`Accumulator`]: crate::Accumulator
/// [`create_udaf`]: crate::expr_fn::create_udaf
/// [`simple_udaf.rs`]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/simple_udaf.rs
/// [`advanced_udaf.rs`]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/advanced_udaf.rs
#[derive(Debug, Clone)]
pub struct AggregateUDF {
inner: Arc<dyn AggregateUDFImpl>,
}
impl PartialEq for AggregateUDF {
fn eq(&self, other: &Self) -> bool {
self.inner.equals(other.inner.as_ref())
}
}
impl Eq for AggregateUDF {}
impl Hash for AggregateUDF {
fn hash<H: Hasher>(&self, state: &mut H) {
self.inner.hash_value().hash(state)
}
}
impl fmt::Display for AggregateUDF {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{}", self.name())
}
}
impl AggregateUDF {
/// Create a new AggregateUDF
///
/// See [`AggregateUDFImpl`] for a more convenient way to create a
/// `AggregateUDF` using trait objects
#[deprecated(since = "34.0.0", note = "please implement AggregateUDFImpl instead")]
pub fn new(
name: &str,
signature: &Signature,
return_type: &ReturnTypeFunction,
accumulator: &AccumulatorFactoryFunction,
) -> Self {
Self::new_from_impl(AggregateUDFLegacyWrapper {
name: name.to_owned(),
signature: signature.clone(),
return_type: Arc::clone(return_type),
accumulator: Arc::clone(accumulator),
})
}
/// Create a new `AggregateUDF` from a `[AggregateUDFImpl]` trait object
///
/// Note this is the same as using the `From` impl (`AggregateUDF::from`)
pub fn new_from_impl<F>(fun: F) -> AggregateUDF
where
F: AggregateUDFImpl + 'static,
{
Self {
inner: Arc::new(fun),
}
}
/// Return the underlying [`AggregateUDFImpl`] trait object for this function
pub fn inner(&self) -> &Arc<dyn AggregateUDFImpl> {
&self.inner
}
/// Adds additional names that can be used to invoke this function, in
/// addition to `name`
///
/// If you implement [`AggregateUDFImpl`] directly you should return aliases directly.
pub fn with_aliases(self, aliases: impl IntoIterator<Item = &'static str>) -> Self {
Self::new_from_impl(AliasedAggregateUDFImpl::new(
Arc::clone(&self.inner),
aliases,
))
}
/// creates an [`Expr`] that calls the aggregate function.
///
/// This utility allows using the UDAF without requiring access to
/// the registry, such as with the DataFrame API.
pub fn call(&self, args: Vec<Expr>) -> Expr {
Expr::AggregateFunction(AggregateFunction::new_udf(
Arc::new(self.clone()),
args,
false,
None,
None,
None,
))
}
/// Returns this function's name
///
/// See [`AggregateUDFImpl::name`] for more details.
pub fn name(&self) -> &str {
self.inner.name()
}
/// Returns the aliases for this function.
pub fn aliases(&self) -> &[String] {
self.inner.aliases()
}
/// Returns this function's signature (what input types are accepted)
///
/// See [`AggregateUDFImpl::signature`] for more details.
pub fn signature(&self) -> &Signature {
self.inner.signature()
}
/// Return the type of the function given its input types
///
/// See [`AggregateUDFImpl::return_type`] for more details.
pub fn return_type(&self, args: &[DataType]) -> Result<DataType> {
self.inner.return_type(args)
}
/// Return an accumulator the given aggregate, given its return datatype
pub fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
self.inner.accumulator(acc_args)
}
/// Return the fields used to store the intermediate state for this aggregator, given
/// the name of the aggregate, value type and ordering fields. See [`AggregateUDFImpl::state_fields`]
/// for more details.
///
/// This is used to support multi-phase aggregations
pub fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<Field>> {
self.inner.state_fields(args)
}
/// See [`AggregateUDFImpl::groups_accumulator_supported`] for more details.
pub fn groups_accumulator_supported(&self, args: AccumulatorArgs) -> bool {
self.inner.groups_accumulator_supported(args)
}
/// See [`AggregateUDFImpl::create_groups_accumulator`] for more details.
pub fn create_groups_accumulator(
&self,
args: AccumulatorArgs,
) -> Result<Box<dyn GroupsAccumulator>> {
self.inner.create_groups_accumulator(args)
}
pub fn create_sliding_accumulator(
&self,
args: AccumulatorArgs,
) -> Result<Box<dyn Accumulator>> {
self.inner.create_sliding_accumulator(args)
}
pub fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> {
self.inner.coerce_types(arg_types)
}
/// See [`AggregateUDFImpl::with_beneficial_ordering`] for more details.
pub fn with_beneficial_ordering(
self,
beneficial_ordering: bool,
) -> Result<Option<AggregateUDF>> {
self.inner
.with_beneficial_ordering(beneficial_ordering)
.map(|updated_udf| updated_udf.map(|udf| Self { inner: udf }))
}
/// Gets the order sensitivity of the UDF. See [`AggregateOrderSensitivity`]
/// for possible options.
pub fn order_sensitivity(&self) -> AggregateOrderSensitivity {
self.inner.order_sensitivity()
}
/// Reserves the `AggregateUDF` (e.g. returns the `AggregateUDF` that will
/// generate same result with this `AggregateUDF` when iterated in reverse
/// order, and `None` if there is no such `AggregateUDF`).
pub fn reverse_udf(&self) -> ReversedUDAF {
self.inner.reverse_expr()
}
/// Do the function rewrite
///
/// See [`AggregateUDFImpl::simplify`] for more details.
pub fn simplify(&self) -> Option<AggregateFunctionSimplification> {
self.inner.simplify()
}
/// Returns true if the function is max, false if the function is min
/// None in all other cases, used in certain optimizations or
/// or aggregate
///
pub fn is_descending(&self) -> Option<bool> {
self.inner.is_descending()
}
}
impl<F> From<F> for AggregateUDF
where
F: AggregateUDFImpl + Send + Sync + 'static,
{
fn from(fun: F) -> Self {
Self::new_from_impl(fun)
}
}
/// Trait for implementing [`AggregateUDF`].
///
/// This trait exposes the full API for implementing user defined aggregate functions and
/// can be used to implement any function.
///
/// See [`advanced_udaf.rs`] for a full example with complete implementation and
/// [`AggregateUDF`] for other available options.
///
/// [`advanced_udaf.rs`]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/advanced_udaf.rs
///
/// # Basic Example
/// ```
/// # use std::any::Any;
/// # use arrow::datatypes::DataType;
/// # use datafusion_common::{DataFusionError, plan_err, Result};
/// # use datafusion_expr::{col, ColumnarValue, Signature, Volatility, Expr};
/// # use datafusion_expr::{AggregateUDFImpl, AggregateUDF, Accumulator, function::{AccumulatorArgs, StateFieldsArgs}};
/// # use arrow::datatypes::Schema;
/// # use arrow::datatypes::Field;
/// #[derive(Debug, Clone)]
/// struct GeoMeanUdf {
/// signature: Signature
/// }
///
/// impl GeoMeanUdf {
/// fn new() -> Self {
/// Self {
/// signature: Signature::uniform(1, vec![DataType::Float64], Volatility::Immutable)
/// }
/// }
/// }
///
/// /// Implement the AggregateUDFImpl trait for GeoMeanUdf
/// impl AggregateUDFImpl for GeoMeanUdf {
/// fn as_any(&self) -> &dyn Any { self }
/// fn name(&self) -> &str { "geo_mean" }
/// fn signature(&self) -> &Signature { &self.signature }
/// fn return_type(&self, args: &[DataType]) -> Result<DataType> {
/// if !matches!(args.get(0), Some(&DataType::Float64)) {
/// return plan_err!("add_one only accepts Float64 arguments");
/// }
/// Ok(DataType::Float64)
/// }
/// // This is the accumulator factory; DataFusion uses it to create new accumulators.
/// fn accumulator(&self, _acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> { unimplemented!() }
/// fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<Field>> {
/// Ok(vec![
/// Field::new("value", args.return_type.clone(), true),
/// Field::new("ordering", DataType::UInt32, true)
/// ])
/// }
/// }
///
/// // Create a new AggregateUDF from the implementation
/// let geometric_mean = AggregateUDF::from(GeoMeanUdf::new());
///
/// // Call the function `geo_mean(col)`
/// let expr = geometric_mean.call(vec![col("a")]);
/// ```
pub trait AggregateUDFImpl: Debug + Send + Sync {
/// Returns this object as an [`Any`] trait object
fn as_any(&self) -> &dyn Any;
/// Returns this function's name
fn name(&self) -> &str;
/// Returns the function's [`Signature`] for information about what input
/// types are accepted and the function's Volatility.
fn signature(&self) -> &Signature;
/// What [`DataType`] will be returned by this function, given the types of
/// the arguments
fn return_type(&self, arg_types: &[DataType]) -> Result<DataType>;
/// Return a new [`Accumulator`] that aggregates values for a specific
/// group during query execution.
///
/// acc_args: [`AccumulatorArgs`] contains information about how the
/// aggregate function was called.
fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>>;
/// Return the fields used to store the intermediate state of this accumulator.
///
/// See [`Accumulator::state`] for background information.
///
/// args: [`StateFieldsArgs`] contains arguments passed to the
/// aggregate function's accumulator.
///
/// # Notes:
///
/// The default implementation returns a single state field named `name`
/// with the same type as `value_type`. This is suitable for aggregates such
/// as `SUM` or `MIN` where partial state can be combined by applying the
/// same aggregate.
///
/// For aggregates such as `AVG` where the partial state is more complex
/// (e.g. a COUNT and a SUM), this method is used to define the additional
/// fields.
///
/// The name of the fields must be unique within the query and thus should
/// be derived from `name`. See [`format_state_name`] for a utility function
/// to generate a unique name.
fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<Field>> {
let fields = vec![Field::new(
format_state_name(args.name, "value"),
args.return_type.clone(),
true,
)];
Ok(fields
.into_iter()
.chain(args.ordering_fields.to_vec())
.collect())
}
/// If the aggregate expression has a specialized
/// [`GroupsAccumulator`] implementation. If this returns true,
/// `[Self::create_groups_accumulator]` will be called.
///
/// # Notes
///
/// Even if this function returns true, DataFusion will still use
/// [`Self::accumulator`] for certain queries, such as when this aggregate is
/// used as a window function or when there no GROUP BY columns in the
/// query.
fn groups_accumulator_supported(&self, _args: AccumulatorArgs) -> bool {
false
}
/// Return a specialized [`GroupsAccumulator`] that manages state
/// for all groups.
///
/// For maximum performance, a [`GroupsAccumulator`] should be
/// implemented in addition to [`Accumulator`].
fn create_groups_accumulator(
&self,
_args: AccumulatorArgs,
) -> Result<Box<dyn GroupsAccumulator>> {
not_impl_err!("GroupsAccumulator hasn't been implemented for {self:?} yet")
}
/// Returns any aliases (alternate names) for this function.
///
/// Note: `aliases` should only include names other than [`Self::name`].
/// Defaults to `[]` (no aliases)
fn aliases(&self) -> &[String] {
&[]
}
/// Sliding accumulator is an alternative accumulator that can be used for
/// window functions. It has retract method to revert the previous update.
///
/// See [retract_batch] for more details.
///
/// [retract_batch]: crate::accumulator::Accumulator::retract_batch
fn create_sliding_accumulator(
&self,
args: AccumulatorArgs,
) -> Result<Box<dyn Accumulator>> {
self.accumulator(args)
}
/// Sets the indicator whether ordering requirements of the AggregateUDFImpl is
/// satisfied by its input. If this is not the case, UDFs with order
/// sensitivity `AggregateOrderSensitivity::Beneficial` can still produce
/// the correct result with possibly more work internally.
///
/// # Returns
///
/// Returns `Ok(Some(updated_udf))` if the process completes successfully.
/// If the expression can benefit from existing input ordering, but does
/// not implement the method, returns an error. Order insensitive and hard
/// requirement aggregators return `Ok(None)`.
fn with_beneficial_ordering(
self: Arc<Self>,
_beneficial_ordering: bool,
) -> Result<Option<Arc<dyn AggregateUDFImpl>>> {
if self.order_sensitivity().is_beneficial() {
return exec_err!(
"Should implement with satisfied for aggregator :{:?}",
self.name()
);
}
Ok(None)
}
/// Gets the order sensitivity of the UDF. See [`AggregateOrderSensitivity`]
/// for possible options.
fn order_sensitivity(&self) -> AggregateOrderSensitivity {
// We have hard ordering requirements by default, meaning that order
// sensitive UDFs need their input orderings to satisfy their ordering
// requirements to generate correct results.
AggregateOrderSensitivity::HardRequirement
}
/// Optionally apply per-UDaF simplification / rewrite rules.
///
/// This can be used to apply function specific simplification rules during
/// optimization (e.g. `arrow_cast` --> `Expr::Cast`). The default
/// implementation does nothing.
///
/// Note that DataFusion handles simplifying arguments and "constant
/// folding" (replacing a function call with constant arguments such as
/// `my_add(1,2) --> 3` ). Thus, there is no need to implement such
/// optimizations manually for specific UDFs.
///
/// # Returns
///
/// [None] if simplify is not defined or,
///
/// Or, a closure with two arguments:
/// * 'aggregate_function': [crate::expr::AggregateFunction] for which simplified has been invoked
/// * 'info': [crate::simplify::SimplifyInfo]
///
/// closure returns simplified [Expr] or an error.
///
fn simplify(&self) -> Option<AggregateFunctionSimplification> {
None
}
/// Returns the reverse expression of the aggregate function.
fn reverse_expr(&self) -> ReversedUDAF {
ReversedUDAF::NotSupported
}
/// Coerce arguments of a function call to types that the function can evaluate.
///
/// This function is only called if [`AggregateUDFImpl::signature`] returns [`crate::TypeSignature::UserDefined`]. Most
/// UDAFs should return one of the other variants of `TypeSignature` which handle common
/// cases
///
/// See the [type coercion module](crate::type_coercion)
/// documentation for more details on type coercion
///
/// For example, if your function requires a floating point arguments, but the user calls
/// it like `my_func(1::int)` (aka with `1` as an integer), coerce_types could return `[DataType::Float64]`
/// to ensure the argument was cast to `1::double`
///
/// # Parameters
/// * `arg_types`: The argument types of the arguments this function with
///
/// # Return value
/// A Vec the same length as `arg_types`. DataFusion will `CAST` the function call
/// arguments to these specific types.
fn coerce_types(&self, _arg_types: &[DataType]) -> Result<Vec<DataType>> {
not_impl_err!("Function {} does not implement coerce_types", self.name())
}
/// Return true if this aggregate UDF is equal to the other.
///
/// Allows customizing the equality of aggregate UDFs.
/// Must be consistent with [`Self::hash_value`] and follow the same rules as [`Eq`]:
///
/// - reflexive: `a.equals(a)`;
/// - symmetric: `a.equals(b)` implies `b.equals(a)`;
/// - transitive: `a.equals(b)` and `b.equals(c)` implies `a.equals(c)`.
///
/// By default, compares [`Self::name`] and [`Self::signature`].
fn equals(&self, other: &dyn AggregateUDFImpl) -> bool {
self.name() == other.name() && self.signature() == other.signature()
}
/// Returns a hash value for this aggregate UDF.
///
/// Allows customizing the hash code of aggregate UDFs. Similarly to [`Hash`] and [`Eq`],
/// if [`Self::equals`] returns true for two UDFs, their `hash_value`s must be the same.
///
/// By default, hashes [`Self::name`] and [`Self::signature`].
fn hash_value(&self) -> u64 {
let hasher = &mut DefaultHasher::new();
self.name().hash(hasher);
self.signature().hash(hasher);
hasher.finish()
}
/// If this function is max, return true
/// if the function is min, return false
/// otherwise return None (the default)
///
///
/// Note: this is used to use special aggregate implementations in certain conditions
fn is_descending(&self) -> Option<bool> {
None
}
}
pub enum ReversedUDAF {
/// The expression is the same as the original expression, like SUM, COUNT
Identical,
/// The expression does not support reverse calculation
NotSupported,
/// The expression is different from the original expression
Reversed(Arc<AggregateUDF>),
}
/// AggregateUDF that adds an alias to the underlying function. It is better to
/// implement [`AggregateUDFImpl`], which supports aliases, directly if possible.
#[derive(Debug)]
struct AliasedAggregateUDFImpl {
inner: Arc<dyn AggregateUDFImpl>,
aliases: Vec<String>,
}
impl AliasedAggregateUDFImpl {
pub fn new(
inner: Arc<dyn AggregateUDFImpl>,
new_aliases: impl IntoIterator<Item = &'static str>,
) -> Self {
let mut aliases = inner.aliases().to_vec();
aliases.extend(new_aliases.into_iter().map(|s| s.to_string()));
Self { inner, aliases }
}
}
impl AggregateUDFImpl for AliasedAggregateUDFImpl {
fn as_any(&self) -> &dyn Any {
self
}
fn name(&self) -> &str {
self.inner.name()
}
fn signature(&self) -> &Signature {
self.inner.signature()
}
fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
self.inner.return_type(arg_types)
}
fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
self.inner.accumulator(acc_args)
}
fn aliases(&self) -> &[String] {
&self.aliases
}
fn equals(&self, other: &dyn AggregateUDFImpl) -> bool {
if let Some(other) = other.as_any().downcast_ref::<AliasedAggregateUDFImpl>() {
self.inner.equals(other.inner.as_ref()) && self.aliases == other.aliases
} else {
false
}
}
fn hash_value(&self) -> u64 {
let hasher = &mut DefaultHasher::new();
self.inner.hash_value().hash(hasher);
self.aliases.hash(hasher);
hasher.finish()
}
}
/// Implementation of [`AggregateUDFImpl`] that wraps the function style pointers
/// of the older API
pub struct AggregateUDFLegacyWrapper {
/// name
name: String,
/// Signature (input arguments)
signature: Signature,
/// Return type
return_type: ReturnTypeFunction,
/// actual implementation
accumulator: AccumulatorFactoryFunction,
}
impl Debug for AggregateUDFLegacyWrapper {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
f.debug_struct("AggregateUDF")
.field("name", &self.name)
.field("signature", &self.signature)
.field("fun", &"<FUNC>")
.finish()
}
}
impl AggregateUDFImpl for AggregateUDFLegacyWrapper {
fn as_any(&self) -> &dyn Any {
self
}
fn name(&self) -> &str {
&self.name
}
fn signature(&self) -> &Signature {
&self.signature
}
fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
// Old API returns an Arc of the datatype for some reason
let res = (self.return_type)(arg_types)?;
Ok(res.as_ref().clone())
}
fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
(self.accumulator)(acc_args)
}
}