1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Rewrite for order by expressions

use crate::expr::{Alias, Sort};
use crate::expr_rewriter::normalize_col;
use crate::{Cast, Expr, ExprSchemable, LogicalPlan, TryCast};

use datafusion_common::tree_node::{Transformed, TransformedResult, TreeNode};
use datafusion_common::{Column, Result};

/// Rewrite sort on aggregate expressions to sort on the column of aggregate output
/// For example, `max(x)` is written to `col("max(x)")`
pub fn rewrite_sort_cols_by_aggs(
    exprs: impl IntoIterator<Item = impl Into<Expr>>,
    plan: &LogicalPlan,
) -> Result<Vec<Expr>> {
    exprs
        .into_iter()
        .map(|e| {
            let expr = e.into();
            match expr {
                Expr::Sort(Sort {
                    expr,
                    asc,
                    nulls_first,
                }) => {
                    let sort = Expr::Sort(Sort::new(
                        Box::new(rewrite_sort_col_by_aggs(*expr, plan)?),
                        asc,
                        nulls_first,
                    ));
                    Ok(sort)
                }
                expr => Ok(expr),
            }
        })
        .collect()
}

fn rewrite_sort_col_by_aggs(expr: Expr, plan: &LogicalPlan) -> Result<Expr> {
    let plan_inputs = plan.inputs();

    // Joins, and Unions are not yet handled (should have a projection
    // on top of them)
    if plan_inputs.len() == 1 {
        let proj_exprs = plan.expressions();
        rewrite_in_terms_of_projection(expr, proj_exprs, plan_inputs[0])
    } else {
        Ok(expr)
    }
}

/// Rewrites a sort expression in terms of the output of the previous [`LogicalPlan`]
///
/// Example:
///
/// Given an input expression such as `col(a) + col(b) + col(c)`
///
/// into `col(a) + col("b + c")`
///
/// Remember that:
/// 1. given a projection with exprs: [a, b + c]
/// 2. t produces an output schema with two columns "a", "b + c"
fn rewrite_in_terms_of_projection(
    expr: Expr,
    proj_exprs: Vec<Expr>,
    input: &LogicalPlan,
) -> Result<Expr> {
    // assumption is that each item in exprs, such as "b + c" is
    // available as an output column named "b + c"
    expr.transform(|expr| {
        // search for unnormalized names first such as "c1" (such as aliases)
        if let Some(found) = proj_exprs.iter().find(|a| (**a) == expr) {
            let col = Expr::Column(
                found
                    .to_field(input.schema())
                    .map(|(qualifier, field)| Column::new(qualifier, field.name()))?,
            );
            return Ok(Transformed::yes(col));
        }

        // if that doesn't work, try to match the expression as an
        // output column -- however first it must be "normalized"
        // (e.g. "c1" --> "t.c1") because that normalization is done
        // at the input of the aggregate.

        let normalized_expr = if let Ok(e) = normalize_col(expr.clone(), input) {
            e
        } else {
            // The expr is not based on Aggregate plan output. Skip it.
            return Ok(Transformed::no(expr));
        };

        // expr is an actual expr like min(t.c2), but we are looking
        // for a column with the same "min(C2)", so translate there
        let name = normalized_expr.display_name()?;

        let search_col = Expr::Column(Column {
            relation: None,
            name,
        });

        // look for the column named the same as this expr
        if let Some(found) = proj_exprs.iter().find(|a| expr_match(&search_col, a)) {
            let found = found.clone();
            return Ok(Transformed::yes(match normalized_expr {
                Expr::Cast(Cast { expr: _, data_type }) => Expr::Cast(Cast {
                    expr: Box::new(found),
                    data_type,
                }),
                Expr::TryCast(TryCast { expr: _, data_type }) => Expr::TryCast(TryCast {
                    expr: Box::new(found),
                    data_type,
                }),
                _ => found,
            }));
        }

        Ok(Transformed::no(expr))
    })
    .data()
}

/// Does the underlying expr match e?
/// so avg(c) as average will match avgc
fn expr_match(needle: &Expr, expr: &Expr) -> bool {
    // check inside aliases
    if let Expr::Alias(Alias { expr, .. }) = &expr {
        expr.as_ref() == needle
    } else {
        expr == needle
    }
}

#[cfg(test)]
mod test {
    use std::ops::Add;
    use std::sync::Arc;

    use arrow::datatypes::{DataType, Field, Schema};

    use crate::{
        cast, col, lit, logical_plan::builder::LogicalTableSource, try_cast,
        LogicalPlanBuilder,
    };

    use super::*;
    use crate::test::function_stub::avg;
    use crate::test::function_stub::min;

    #[test]
    fn rewrite_sort_cols_by_agg() {
        //  gby c1, agg: min(c2)
        let agg = make_input()
            .aggregate(
                // gby: c1
                vec![col("c1")],
                // agg: min(c2)
                vec![min(col("c2"))],
            )
            .unwrap()
            .build()
            .unwrap();

        let cases = vec![
            TestCase {
                desc: "c1 --> c1",
                input: sort(col("c1")),
                expected: sort(col("c1")),
            },
            TestCase {
                desc: "c1 + c2 --> c1 + c2",
                input: sort(col("c1") + col("c1")),
                expected: sort(col("c1") + col("c1")),
            },
            TestCase {
                desc: r#"min(c2) --> "min(c2)"#,
                input: sort(min(col("c2"))),
                expected: sort(min(col("c2"))),
            },
            TestCase {
                desc: r#"c1 + min(c2) --> "c1 + min(c2)"#,
                input: sort(col("c1") + min(col("c2"))),
                expected: sort(col("c1") + min(col("c2"))),
            },
        ];

        for case in cases {
            case.run(&agg)
        }
    }

    #[test]
    fn rewrite_sort_cols_by_agg_alias() {
        let agg = make_input()
            .aggregate(
                // gby c1
                vec![col("c1")],
                // agg: min(c2), avg(c3)
                vec![min(col("c2")), avg(col("c3"))],
            )
            .unwrap()
            //  projects out an expression "c1" that is different than the column "c1"
            .project(vec![
                // c1 + 1 as c1,
                col("c1").add(lit(1)).alias("c1"),
                // min(c2)
                min(col("c2")),
                // avg("c3") as average
                avg(col("c3")).alias("average"),
            ])
            .unwrap()
            .build()
            .unwrap();

        let cases = vec![
            TestCase {
                desc: "c1 --> c1  -- column *named* c1 that came out of the projection, (not t.c1)",
                input: sort(col("c1")),
                // should be "c1" not t.c1
                expected: sort(col("c1")),
            },
            TestCase {
                desc: r#"min(c2) --> "min(c2)" -- (column *named* "min(t.c2)"!)"#,
                input: sort(min(col("c2"))),
                expected: sort(col("min(t.c2)")),
            },
            TestCase {
                desc: r#"c1 + min(c2) --> "c1 + min(c2)" -- (column *named* "min(t.c2)"!)"#,
                input: sort(col("c1") + min(col("c2"))),
                // should be "c1" not t.c1
                expected: sort(col("c1") + col("min(t.c2)")),
            },
            TestCase {
                desc: r#"avg(c3) --> "avg(t.c3)" as average (column *named* "avg(t.c3)", aliased)"#,
                input: sort(avg(col("c3"))),
                expected: sort(col("avg(t.c3)").alias("average")),
            },
        ];

        for case in cases {
            case.run(&agg)
        }
    }

    #[test]
    fn preserve_cast() {
        let plan = make_input()
            .project(vec![col("c2").alias("c2")])
            .unwrap()
            .project(vec![col("c2").alias("c2")])
            .unwrap()
            .build()
            .unwrap();

        let cases = vec![
            TestCase {
                desc: "Cast is preserved by rewrite_sort_cols_by_aggs",
                input: sort(cast(col("c2"), DataType::Int64)),
                expected: sort(cast(col("c2").alias("c2"), DataType::Int64)),
            },
            TestCase {
                desc: "TryCast is preserved by rewrite_sort_cols_by_aggs",
                input: sort(try_cast(col("c2"), DataType::Int64)),
                expected: sort(try_cast(col("c2").alias("c2"), DataType::Int64)),
            },
        ];

        for case in cases {
            case.run(&plan)
        }
    }

    struct TestCase {
        desc: &'static str,
        input: Expr,
        expected: Expr,
    }

    impl TestCase {
        /// calls rewrite_sort_cols_by_aggs for expr and compares it to expected_expr
        fn run(self, input_plan: &LogicalPlan) {
            let Self {
                desc,
                input,
                expected,
            } = self;

            println!("running: '{desc}'");
            let mut exprs =
                rewrite_sort_cols_by_aggs(vec![input.clone()], input_plan).unwrap();

            assert_eq!(exprs.len(), 1);
            let rewritten = exprs.pop().unwrap();

            assert_eq!(
                rewritten, expected,
                "\n\ninput:{input:?}\nrewritten:{rewritten:?}\nexpected:{expected:?}\n"
            );
        }
    }

    /// Scan of a table: t(c1 int, c2 varchar, c3 float)
    fn make_input() -> LogicalPlanBuilder {
        let schema = Arc::new(Schema::new(vec![
            Field::new("c1", DataType::Int32, true),
            Field::new("c2", DataType::Utf8, true),
            Field::new("c3", DataType::Float64, true),
        ]));
        let projection = None;
        LogicalPlanBuilder::scan(
            "t",
            Arc::new(LogicalTableSource::new(schema)),
            projection,
        )
        .unwrap()
    }

    fn sort(expr: Expr) -> Expr {
        let asc = true;
        let nulls_first = true;
        expr.sort(asc, nulls_first)
    }
}