1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Expression utilities

use std::cmp::Ordering;
use std::collections::{HashMap, HashSet};
use std::sync::Arc;

use crate::expr::{Alias, Sort, WindowFunction};
use crate::expr_rewriter::strip_outer_reference;
use crate::signature::{Signature, TypeSignature};
use crate::{
    and, BinaryExpr, Expr, ExprSchemable, Filter, GroupingSet, LogicalPlan, Operator,
};

use arrow::datatypes::{DataType, Field, Schema, TimeUnit};
use datafusion_common::tree_node::{
    Transformed, TransformedResult, TreeNode, TreeNodeRecursion,
};
use datafusion_common::utils::get_at_indices;
use datafusion_common::{
    internal_err, plan_datafusion_err, plan_err, Column, DFSchema, DFSchemaRef, Result,
    TableReference,
};

use sqlparser::ast::{ExceptSelectItem, ExcludeSelectItem, WildcardAdditionalOptions};

///  The value to which `COUNT(*)` is expanded to in
///  `COUNT(<constant>)` expressions
pub use datafusion_common::utils::expr::COUNT_STAR_EXPANSION;

/// Recursively walk a list of expression trees, collecting the unique set of columns
/// referenced in the expression
#[deprecated(since = "40.0.0", note = "Expr::add_column_refs instead")]
pub fn exprlist_to_columns(expr: &[Expr], accum: &mut HashSet<Column>) -> Result<()> {
    for e in expr {
        expr_to_columns(e, accum)?;
    }
    Ok(())
}

/// Count the number of distinct exprs in a list of group by expressions. If the
/// first element is a `GroupingSet` expression then it must be the only expr.
pub fn grouping_set_expr_count(group_expr: &[Expr]) -> Result<usize> {
    if let Some(Expr::GroupingSet(grouping_set)) = group_expr.first() {
        if group_expr.len() > 1 {
            return plan_err!(
                "Invalid group by expressions, GroupingSet must be the only expression"
            );
        }
        Ok(grouping_set.distinct_expr().len())
    } else {
        Ok(group_expr.len())
    }
}

/// The [power set] (or powerset) of a set S is the set of all subsets of S, \
/// including the empty set and S itself.
///
/// Example:
///
/// If S is the set {x, y, z}, then all the subsets of S are \
///  {} \
///  {x} \
///  {y} \
///  {z} \
///  {x, y} \
///  {x, z} \
///  {y, z} \
///  {x, y, z} \
///  and hence the power set of S is {{}, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}.
///
/// [power set]: https://en.wikipedia.org/wiki/Power_set
fn powerset<T>(slice: &[T]) -> Result<Vec<Vec<&T>>, String> {
    if slice.len() >= 64 {
        return Err("The size of the set must be less than 64.".into());
    }

    let mut v = Vec::new();
    for mask in 0..(1 << slice.len()) {
        let mut ss = vec![];
        let mut bitset = mask;
        while bitset > 0 {
            let rightmost: u64 = bitset & !(bitset - 1);
            let idx = rightmost.trailing_zeros();
            let item = slice.get(idx as usize).unwrap();
            ss.push(item);
            // zero the trailing bit
            bitset &= bitset - 1;
        }
        v.push(ss);
    }
    Ok(v)
}

/// check the number of expressions contained in the grouping_set
fn check_grouping_set_size_limit(size: usize) -> Result<()> {
    let max_grouping_set_size = 65535;
    if size > max_grouping_set_size {
        return plan_err!("The number of group_expression in grouping_set exceeds the maximum limit {max_grouping_set_size}, found {size}");
    }

    Ok(())
}

/// check the number of grouping_set contained in the grouping sets
fn check_grouping_sets_size_limit(size: usize) -> Result<()> {
    let max_grouping_sets_size = 4096;
    if size > max_grouping_sets_size {
        return plan_err!("The number of grouping_set in grouping_sets exceeds the maximum limit {max_grouping_sets_size}, found {size}");
    }

    Ok(())
}

/// Merge two grouping_set
///
/// # Example
/// ```text
/// (A, B), (C, D) -> (A, B, C, D)
/// ```
///
/// # Error
/// - [`DataFusionError`]: The number of group_expression in grouping_set exceeds the maximum limit
///
/// [`DataFusionError`]: datafusion_common::DataFusionError
fn merge_grouping_set<T: Clone>(left: &[T], right: &[T]) -> Result<Vec<T>> {
    check_grouping_set_size_limit(left.len() + right.len())?;
    Ok(left.iter().chain(right.iter()).cloned().collect())
}

/// Compute the cross product of two grouping_sets
///
/// # Example
/// ```text
/// [(A, B), (C, D)], [(E), (F)] -> [(A, B, E), (A, B, F), (C, D, E), (C, D, F)]
/// ```
///
/// # Error
/// - [`DataFusionError`]: The number of group_expression in grouping_set exceeds the maximum limit
/// - [`DataFusionError`]: The number of grouping_set in grouping_sets exceeds the maximum limit
///
/// [`DataFusionError`]: datafusion_common::DataFusionError
fn cross_join_grouping_sets<T: Clone>(
    left: &[Vec<T>],
    right: &[Vec<T>],
) -> Result<Vec<Vec<T>>> {
    let grouping_sets_size = left.len() * right.len();

    check_grouping_sets_size_limit(grouping_sets_size)?;

    let mut result = Vec::with_capacity(grouping_sets_size);
    for le in left {
        for re in right {
            result.push(merge_grouping_set(le, re)?);
        }
    }
    Ok(result)
}

/// Convert multiple grouping expressions into one [`GroupingSet::GroupingSets`],\
/// if the grouping expression does not contain [`Expr::GroupingSet`] or only has one expression,\
/// no conversion will be performed.
///
/// e.g.
///
/// person.id,\
/// GROUPING SETS ((person.age, person.salary),(person.age)),\
/// ROLLUP(person.state, person.birth_date)
///
/// =>
///
/// GROUPING SETS (\
///   (person.id, person.age, person.salary),\
///   (person.id, person.age, person.salary, person.state),\
///   (person.id, person.age, person.salary, person.state, person.birth_date),\
///   (person.id, person.age),\
///   (person.id, person.age, person.state),\
///   (person.id, person.age, person.state, person.birth_date)\
/// )
pub fn enumerate_grouping_sets(group_expr: Vec<Expr>) -> Result<Vec<Expr>> {
    let has_grouping_set = group_expr
        .iter()
        .any(|expr| matches!(expr, Expr::GroupingSet(_)));
    if !has_grouping_set || group_expr.len() == 1 {
        return Ok(group_expr);
    }
    // only process mix grouping sets
    let partial_sets = group_expr
        .iter()
        .map(|expr| {
            let exprs = match expr {
                Expr::GroupingSet(GroupingSet::GroupingSets(grouping_sets)) => {
                    check_grouping_sets_size_limit(grouping_sets.len())?;
                    grouping_sets.iter().map(|e| e.iter().collect()).collect()
                }
                Expr::GroupingSet(GroupingSet::Cube(group_exprs)) => {
                    let grouping_sets = powerset(group_exprs)
                        .map_err(|e| plan_datafusion_err!("{}", e))?;
                    check_grouping_sets_size_limit(grouping_sets.len())?;
                    grouping_sets
                }
                Expr::GroupingSet(GroupingSet::Rollup(group_exprs)) => {
                    let size = group_exprs.len();
                    let slice = group_exprs.as_slice();
                    check_grouping_sets_size_limit(size * (size + 1) / 2 + 1)?;
                    (0..(size + 1))
                        .map(|i| slice[0..i].iter().collect())
                        .collect()
                }
                expr => vec![vec![expr]],
            };
            Ok(exprs)
        })
        .collect::<Result<Vec<_>>>()?;

    // cross join
    let grouping_sets = partial_sets
        .into_iter()
        .map(Ok)
        .reduce(|l, r| cross_join_grouping_sets(&l?, &r?))
        .transpose()?
        .map(|e| {
            e.into_iter()
                .map(|e| e.into_iter().cloned().collect())
                .collect()
        })
        .unwrap_or_default();

    Ok(vec![Expr::GroupingSet(GroupingSet::GroupingSets(
        grouping_sets,
    ))])
}

/// Find all distinct exprs in a list of group by expressions. If the
/// first element is a `GroupingSet` expression then it must be the only expr.
pub fn grouping_set_to_exprlist(group_expr: &[Expr]) -> Result<Vec<&Expr>> {
    if let Some(Expr::GroupingSet(grouping_set)) = group_expr.first() {
        if group_expr.len() > 1 {
            return plan_err!(
                "Invalid group by expressions, GroupingSet must be the only expression"
            );
        }
        Ok(grouping_set.distinct_expr())
    } else {
        Ok(group_expr.iter().collect())
    }
}

/// Recursively walk an expression tree, collecting the unique set of columns
/// referenced in the expression
pub fn expr_to_columns(expr: &Expr, accum: &mut HashSet<Column>) -> Result<()> {
    expr.apply(|expr| {
        match expr {
            Expr::Column(qc) => {
                accum.insert(qc.clone());
            }
            // Use explicit pattern match instead of a default
            // implementation, so that in the future if someone adds
            // new Expr types, they will check here as well
            Expr::Unnest(_)
            | Expr::ScalarVariable(_, _)
            | Expr::Alias(_)
            | Expr::Literal(_)
            | Expr::BinaryExpr { .. }
            | Expr::Like { .. }
            | Expr::SimilarTo { .. }
            | Expr::Not(_)
            | Expr::IsNotNull(_)
            | Expr::IsNull(_)
            | Expr::IsTrue(_)
            | Expr::IsFalse(_)
            | Expr::IsUnknown(_)
            | Expr::IsNotTrue(_)
            | Expr::IsNotFalse(_)
            | Expr::IsNotUnknown(_)
            | Expr::Negative(_)
            | Expr::Between { .. }
            | Expr::Case { .. }
            | Expr::Cast { .. }
            | Expr::TryCast { .. }
            | Expr::Sort { .. }
            | Expr::ScalarFunction(..)
            | Expr::WindowFunction { .. }
            | Expr::AggregateFunction { .. }
            | Expr::GroupingSet(_)
            | Expr::InList { .. }
            | Expr::Exists { .. }
            | Expr::InSubquery(_)
            | Expr::ScalarSubquery(_)
            | Expr::Wildcard { .. }
            | Expr::Placeholder(_)
            | Expr::OuterReferenceColumn { .. } => {}
        }
        Ok(TreeNodeRecursion::Continue)
    })
    .map(|_| ())
}

/// Find excluded columns in the schema, if any
/// SELECT * EXCLUDE(col1, col2), would return `vec![col1, col2]`
fn get_excluded_columns(
    opt_exclude: Option<&ExcludeSelectItem>,
    opt_except: Option<&ExceptSelectItem>,
    schema: &DFSchema,
    qualifier: Option<&TableReference>,
) -> Result<Vec<Column>> {
    let mut idents = vec![];
    if let Some(excepts) = opt_except {
        idents.push(&excepts.first_element);
        idents.extend(&excepts.additional_elements);
    }
    if let Some(exclude) = opt_exclude {
        match exclude {
            ExcludeSelectItem::Single(ident) => idents.push(ident),
            ExcludeSelectItem::Multiple(idents_inner) => idents.extend(idents_inner),
        }
    }
    // Excluded columns should be unique
    let n_elem = idents.len();
    let unique_idents = idents.into_iter().collect::<HashSet<_>>();
    // if HashSet size, and vector length are different, this means that some of the excluded columns
    // are not unique. In this case return error.
    if n_elem != unique_idents.len() {
        return plan_err!("EXCLUDE or EXCEPT contains duplicate column names");
    }

    let mut result = vec![];
    for ident in unique_idents.into_iter() {
        let col_name = ident.value.as_str();
        let (qualifier, field) = schema.qualified_field_with_name(qualifier, col_name)?;
        result.push(Column::from((qualifier, field)));
    }
    Ok(result)
}

/// Returns all `Expr`s in the schema, except the `Column`s in the `columns_to_skip`
fn get_exprs_except_skipped(
    schema: &DFSchema,
    columns_to_skip: HashSet<Column>,
) -> Vec<Expr> {
    if columns_to_skip.is_empty() {
        schema.iter().map(Expr::from).collect::<Vec<Expr>>()
    } else {
        schema
            .columns()
            .iter()
            .filter_map(|c| {
                if !columns_to_skip.contains(c) {
                    Some(Expr::Column(c.clone()))
                } else {
                    None
                }
            })
            .collect::<Vec<Expr>>()
    }
}

/// Resolves an `Expr::Wildcard` to a collection of `Expr::Column`'s.
pub fn expand_wildcard(
    schema: &DFSchema,
    plan: &LogicalPlan,
    wildcard_options: Option<&WildcardAdditionalOptions>,
) -> Result<Vec<Expr>> {
    let using_columns = plan.using_columns()?;
    let mut columns_to_skip = using_columns
        .into_iter()
        // For each USING JOIN condition, only expand to one of each join column in projection
        .flat_map(|cols| {
            let mut cols = cols.into_iter().collect::<Vec<_>>();
            // sort join columns to make sure we consistently keep the same
            // qualified column
            cols.sort();
            let mut out_column_names: HashSet<String> = HashSet::new();
            cols.into_iter()
                .filter_map(|c| {
                    if out_column_names.contains(&c.name) {
                        Some(c)
                    } else {
                        out_column_names.insert(c.name);
                        None
                    }
                })
                .collect::<Vec<_>>()
        })
        .collect::<HashSet<_>>();
    let excluded_columns = if let Some(WildcardAdditionalOptions {
        opt_exclude,
        opt_except,
        ..
    }) = wildcard_options
    {
        get_excluded_columns(opt_exclude.as_ref(), opt_except.as_ref(), schema, None)?
    } else {
        vec![]
    };
    // Add each excluded `Column` to columns_to_skip
    columns_to_skip.extend(excluded_columns);
    Ok(get_exprs_except_skipped(schema, columns_to_skip))
}

/// Resolves an `Expr::Wildcard` to a collection of qualified `Expr::Column`'s.
pub fn expand_qualified_wildcard(
    qualifier: &TableReference,
    schema: &DFSchema,
    wildcard_options: Option<&WildcardAdditionalOptions>,
) -> Result<Vec<Expr>> {
    let qualified_indices = schema.fields_indices_with_qualified(qualifier);
    let projected_func_dependencies = schema
        .functional_dependencies()
        .project_functional_dependencies(&qualified_indices, qualified_indices.len());
    let fields_with_qualified = get_at_indices(schema.fields(), &qualified_indices)?;
    if fields_with_qualified.is_empty() {
        return plan_err!("Invalid qualifier {qualifier}");
    }

    let qualified_schema = Arc::new(Schema::new(fields_with_qualified));
    let qualified_dfschema =
        DFSchema::try_from_qualified_schema(qualifier.clone(), &qualified_schema)?
            .with_functional_dependencies(projected_func_dependencies)?;
    let excluded_columns = if let Some(WildcardAdditionalOptions {
        opt_exclude,
        opt_except,
        ..
    }) = wildcard_options
    {
        get_excluded_columns(
            opt_exclude.as_ref(),
            opt_except.as_ref(),
            schema,
            Some(qualifier),
        )?
    } else {
        vec![]
    };
    // Add each excluded `Column` to columns_to_skip
    let mut columns_to_skip = HashSet::new();
    columns_to_skip.extend(excluded_columns);
    Ok(get_exprs_except_skipped(
        &qualified_dfschema,
        columns_to_skip,
    ))
}

/// (expr, "is the SortExpr for window (either comes from PARTITION BY or ORDER BY columns)")
/// if bool is true SortExpr comes from `PARTITION BY` column, if false comes from `ORDER BY` column
type WindowSortKey = Vec<(Expr, bool)>;

/// Generate a sort key for a given window expr's partition_by and order_bu expr
pub fn generate_sort_key(
    partition_by: &[Expr],
    order_by: &[Expr],
) -> Result<WindowSortKey> {
    let normalized_order_by_keys = order_by
        .iter()
        .map(|e| match e {
            Expr::Sort(Sort { expr, .. }) => {
                Ok(Expr::Sort(Sort::new(expr.clone(), true, false)))
            }
            _ => plan_err!("Order by only accepts sort expressions"),
        })
        .collect::<Result<Vec<_>>>()?;

    let mut final_sort_keys = vec![];
    let mut is_partition_flag = vec![];
    partition_by.iter().for_each(|e| {
        // By default, create sort key with ASC is true and NULLS LAST to be consistent with
        // PostgreSQL's rule: https://www.postgresql.org/docs/current/queries-order.html
        let e = e.clone().sort(true, false);
        if let Some(pos) = normalized_order_by_keys.iter().position(|key| key.eq(&e)) {
            let order_by_key = &order_by[pos];
            if !final_sort_keys.contains(order_by_key) {
                final_sort_keys.push(order_by_key.clone());
                is_partition_flag.push(true);
            }
        } else if !final_sort_keys.contains(&e) {
            final_sort_keys.push(e);
            is_partition_flag.push(true);
        }
    });

    order_by.iter().for_each(|e| {
        if !final_sort_keys.contains(e) {
            final_sort_keys.push(e.clone());
            is_partition_flag.push(false);
        }
    });
    let res = final_sort_keys
        .into_iter()
        .zip(is_partition_flag)
        .collect::<Vec<_>>();
    Ok(res)
}

/// Compare the sort expr as PostgreSQL's common_prefix_cmp():
/// <https://github.com/postgres/postgres/blob/master/src/backend/optimizer/plan/planner.c>
pub fn compare_sort_expr(
    sort_expr_a: &Expr,
    sort_expr_b: &Expr,
    schema: &DFSchemaRef,
) -> Ordering {
    match (sort_expr_a, sort_expr_b) {
        (
            Expr::Sort(Sort {
                expr: expr_a,
                asc: asc_a,
                nulls_first: nulls_first_a,
            }),
            Expr::Sort(Sort {
                expr: expr_b,
                asc: asc_b,
                nulls_first: nulls_first_b,
            }),
        ) => {
            let ref_indexes_a = find_column_indexes_referenced_by_expr(expr_a, schema);
            let ref_indexes_b = find_column_indexes_referenced_by_expr(expr_b, schema);
            for (idx_a, idx_b) in ref_indexes_a.iter().zip(ref_indexes_b.iter()) {
                match idx_a.cmp(idx_b) {
                    Ordering::Less => {
                        return Ordering::Less;
                    }
                    Ordering::Greater => {
                        return Ordering::Greater;
                    }
                    Ordering::Equal => {}
                }
            }
            match ref_indexes_a.len().cmp(&ref_indexes_b.len()) {
                Ordering::Less => return Ordering::Greater,
                Ordering::Greater => {
                    return Ordering::Less;
                }
                Ordering::Equal => {}
            }
            match (asc_a, asc_b) {
                (true, false) => {
                    return Ordering::Greater;
                }
                (false, true) => {
                    return Ordering::Less;
                }
                _ => {}
            }
            match (nulls_first_a, nulls_first_b) {
                (true, false) => {
                    return Ordering::Less;
                }
                (false, true) => {
                    return Ordering::Greater;
                }
                _ => {}
            }
            Ordering::Equal
        }
        _ => Ordering::Equal,
    }
}

/// group a slice of window expression expr by their order by expressions
pub fn group_window_expr_by_sort_keys(
    window_expr: Vec<Expr>,
) -> Result<Vec<(WindowSortKey, Vec<Expr>)>> {
    let mut result = vec![];
    window_expr.into_iter().try_for_each(|expr| match &expr {
        Expr::WindowFunction( WindowFunction{ partition_by, order_by, .. }) => {
            let sort_key = generate_sort_key(partition_by, order_by)?;
            if let Some((_, values)) = result.iter_mut().find(
                |group: &&mut (WindowSortKey, Vec<Expr>)| matches!(group, (key, _) if *key == sort_key),
            ) {
                values.push(expr);
            } else {
                result.push((sort_key, vec![expr]))
            }
            Ok(())
        }
        other => internal_err!(
            "Impossibly got non-window expr {other:?}"
        ),
    })?;
    Ok(result)
}

/// Collect all deeply nested `Expr::AggregateFunction`.
/// They are returned in order of occurrence (depth
/// first), with duplicates omitted.
pub fn find_aggregate_exprs(exprs: &[Expr]) -> Vec<Expr> {
    find_exprs_in_exprs(exprs, &|nested_expr| {
        matches!(nested_expr, Expr::AggregateFunction { .. })
    })
}

/// Collect all deeply nested `Expr::Sort`. They are returned in order of occurrence
/// (depth first), with duplicates omitted.
pub fn find_sort_exprs(exprs: &[Expr]) -> Vec<Expr> {
    find_exprs_in_exprs(exprs, &|nested_expr| {
        matches!(nested_expr, Expr::Sort { .. })
    })
}

/// Collect all deeply nested `Expr::WindowFunction`. They are returned in order of occurrence
/// (depth first), with duplicates omitted.
pub fn find_window_exprs(exprs: &[Expr]) -> Vec<Expr> {
    find_exprs_in_exprs(exprs, &|nested_expr| {
        matches!(nested_expr, Expr::WindowFunction { .. })
    })
}

/// Collect all deeply nested `Expr::OuterReferenceColumn`. They are returned in order of occurrence
/// (depth first), with duplicates omitted.
pub fn find_out_reference_exprs(expr: &Expr) -> Vec<Expr> {
    find_exprs_in_expr(expr, &|nested_expr| {
        matches!(nested_expr, Expr::OuterReferenceColumn { .. })
    })
}

/// Search the provided `Expr`'s, and all of their nested `Expr`, for any that
/// pass the provided test. The returned `Expr`'s are deduplicated and returned
/// in order of appearance (depth first).
fn find_exprs_in_exprs<F>(exprs: &[Expr], test_fn: &F) -> Vec<Expr>
where
    F: Fn(&Expr) -> bool,
{
    exprs
        .iter()
        .flat_map(|expr| find_exprs_in_expr(expr, test_fn))
        .fold(vec![], |mut acc, expr| {
            if !acc.contains(&expr) {
                acc.push(expr)
            }
            acc
        })
}

/// Search an `Expr`, and all of its nested `Expr`'s, for any that pass the
/// provided test. The returned `Expr`'s are deduplicated and returned in order
/// of appearance (depth first).
fn find_exprs_in_expr<F>(expr: &Expr, test_fn: &F) -> Vec<Expr>
where
    F: Fn(&Expr) -> bool,
{
    let mut exprs = vec![];
    expr.apply(|expr| {
        if test_fn(expr) {
            if !(exprs.contains(expr)) {
                exprs.push(expr.clone())
            }
            // stop recursing down this expr once we find a match
            return Ok(TreeNodeRecursion::Jump);
        }

        Ok(TreeNodeRecursion::Continue)
    })
    // pre_visit always returns OK, so this will always too
    .expect("no way to return error during recursion");
    exprs
}

/// Recursively inspect an [`Expr`] and all its children.
pub fn inspect_expr_pre<F, E>(expr: &Expr, mut f: F) -> Result<(), E>
where
    F: FnMut(&Expr) -> Result<(), E>,
{
    let mut err = Ok(());
    expr.apply(|expr| {
        if let Err(e) = f(expr) {
            // save the error for later (it may not be a DataFusionError
            err = Err(e);
            Ok(TreeNodeRecursion::Stop)
        } else {
            // keep going
            Ok(TreeNodeRecursion::Continue)
        }
    })
    // The closure always returns OK, so this will always too
    .expect("no way to return error during recursion");

    err
}

/// Returns a new logical plan based on the original one with inputs
/// and expressions replaced.
///
/// The exprs correspond to the same order of expressions returned by
/// `LogicalPlan::expressions`. This function is used in optimizers in
/// the following way:
///
/// ```text
/// let new_inputs = optimize_children(..., plan, props);
///
/// // get the plans expressions to optimize
/// let exprs = plan.expressions();
///
/// // potentially rewrite plan expressions
/// let rewritten_exprs = rewrite_exprs(exprs);
///
/// // create new plan using rewritten_exprs in same position
/// let new_plan = from_plan(&plan, rewritten_exprs, new_inputs);
/// ```
///
/// Notice: sometimes [from_plan] will use schema of original plan, it don't change schema!
/// Such as `Projection/Aggregate/Window`
#[deprecated(since = "31.0.0", note = "use LogicalPlan::with_new_exprs instead")]
pub fn from_plan(
    plan: &LogicalPlan,
    expr: &[Expr],
    inputs: &[LogicalPlan],
) -> Result<LogicalPlan> {
    plan.with_new_exprs(expr.to_vec(), inputs.to_vec())
}

/// Create field meta-data from an expression, for use in a result set schema
pub fn exprlist_to_fields<'a>(
    exprs: impl IntoIterator<Item = &'a Expr>,
    plan: &LogicalPlan,
) -> Result<Vec<(Option<TableReference>, Arc<Field>)>> {
    // look for exact match in plan's output schema
    let input_schema = &plan.schema();
    exprs
        .into_iter()
        .map(|e| e.to_field(input_schema))
        .collect()
}

/// Convert an expression into Column expression if it's already provided as input plan.
///
/// For example, it rewrites:
///
/// ```text
/// .aggregate(vec![col("c1")], vec![sum(col("c2"))])?
/// .project(vec![col("c1"), sum(col("c2"))?
/// ```
///
/// Into:
///
/// ```text
/// .aggregate(vec![col("c1")], vec![sum(col("c2"))])?
/// .project(vec![col("c1"), col("SUM(c2)")?
/// ```
pub fn columnize_expr(e: Expr, input: &LogicalPlan) -> Result<Expr> {
    let output_exprs = match input.columnized_output_exprs() {
        Ok(exprs) if !exprs.is_empty() => exprs,
        _ => return Ok(e),
    };
    let exprs_map: HashMap<&Expr, Column> = output_exprs.into_iter().collect();
    e.transform_down(|node: Expr| match exprs_map.get(&node) {
        Some(column) => Ok(Transformed::new(
            Expr::Column(column.clone()),
            true,
            TreeNodeRecursion::Jump,
        )),
        None => Ok(Transformed::no(node)),
    })
    .data()
}

/// Collect all deeply nested `Expr::Column`'s. They are returned in order of
/// appearance (depth first), and may contain duplicates.
pub fn find_column_exprs(exprs: &[Expr]) -> Vec<Expr> {
    exprs
        .iter()
        .flat_map(find_columns_referenced_by_expr)
        .map(Expr::Column)
        .collect()
}

pub(crate) fn find_columns_referenced_by_expr(e: &Expr) -> Vec<Column> {
    let mut exprs = vec![];
    e.apply(|expr| {
        if let Expr::Column(c) = expr {
            exprs.push(c.clone())
        }
        Ok(TreeNodeRecursion::Continue)
    })
    // As the closure always returns Ok, this "can't" error
    .expect("Unexpected error");
    exprs
}

/// Convert any `Expr` to an `Expr::Column`.
pub fn expr_as_column_expr(expr: &Expr, plan: &LogicalPlan) -> Result<Expr> {
    match expr {
        Expr::Column(col) => {
            let (qualifier, field) = plan.schema().qualified_field_from_column(col)?;
            Ok(Expr::from(Column::from((qualifier, field))))
        }
        _ => Ok(Expr::Column(Column::from_name(expr.display_name()?))),
    }
}

/// Recursively walk an expression tree, collecting the column indexes
/// referenced in the expression
pub(crate) fn find_column_indexes_referenced_by_expr(
    e: &Expr,
    schema: &DFSchemaRef,
) -> Vec<usize> {
    let mut indexes = vec![];
    e.apply(|expr| {
        match expr {
            Expr::Column(qc) => {
                if let Ok(idx) = schema.index_of_column(qc) {
                    indexes.push(idx);
                }
            }
            Expr::Literal(_) => {
                indexes.push(usize::MAX);
            }
            _ => {}
        }
        Ok(TreeNodeRecursion::Continue)
    })
    .unwrap();
    indexes
}

/// can this data type be used in hash join equal conditions??
/// data types here come from function 'equal_rows', if more data types are supported
/// in equal_rows(hash join), add those data types here to generate join logical plan.
pub fn can_hash(data_type: &DataType) -> bool {
    match data_type {
        DataType::Null => true,
        DataType::Boolean => true,
        DataType::Int8 => true,
        DataType::Int16 => true,
        DataType::Int32 => true,
        DataType::Int64 => true,
        DataType::UInt8 => true,
        DataType::UInt16 => true,
        DataType::UInt32 => true,
        DataType::UInt64 => true,
        DataType::Float32 => true,
        DataType::Float64 => true,
        DataType::Timestamp(time_unit, _) => match time_unit {
            TimeUnit::Second => true,
            TimeUnit::Millisecond => true,
            TimeUnit::Microsecond => true,
            TimeUnit::Nanosecond => true,
        },
        DataType::Utf8 => true,
        DataType::LargeUtf8 => true,
        DataType::Decimal128(_, _) => true,
        DataType::Date32 => true,
        DataType::Date64 => true,
        DataType::FixedSizeBinary(_) => true,
        DataType::Dictionary(key_type, value_type)
            if *value_type.as_ref() == DataType::Utf8 =>
        {
            DataType::is_dictionary_key_type(key_type)
        }
        DataType::List(_) => true,
        DataType::LargeList(_) => true,
        DataType::FixedSizeList(_, _) => true,
        DataType::Struct(fields) => fields.iter().all(|f| can_hash(f.data_type())),
        _ => false,
    }
}

/// Check whether all columns are from the schema.
pub fn check_all_columns_from_schema(
    columns: &HashSet<&Column>,
    schema: &DFSchema,
) -> Result<bool> {
    for col in columns.iter() {
        let exist = schema.is_column_from_schema(col);
        if !exist {
            return Ok(false);
        }
    }

    Ok(true)
}

/// Give two sides of the equijoin predicate, return a valid join key pair.
/// If there is no valid join key pair, return None.
///
/// A valid join means:
/// 1. All referenced column of the left side is from the left schema, and
///    all referenced column of the right side is from the right schema.
/// 2. Or opposite. All referenced column of the left side is from the right schema,
///    and the right side is from the left schema.
///
pub fn find_valid_equijoin_key_pair(
    left_key: &Expr,
    right_key: &Expr,
    left_schema: &DFSchema,
    right_schema: &DFSchema,
) -> Result<Option<(Expr, Expr)>> {
    let left_using_columns = left_key.column_refs();
    let right_using_columns = right_key.column_refs();

    // Conditions like a = 10, will be added to non-equijoin.
    if left_using_columns.is_empty() || right_using_columns.is_empty() {
        return Ok(None);
    }

    if check_all_columns_from_schema(&left_using_columns, left_schema)?
        && check_all_columns_from_schema(&right_using_columns, right_schema)?
    {
        return Ok(Some((left_key.clone(), right_key.clone())));
    } else if check_all_columns_from_schema(&right_using_columns, left_schema)?
        && check_all_columns_from_schema(&left_using_columns, right_schema)?
    {
        return Ok(Some((right_key.clone(), left_key.clone())));
    }

    Ok(None)
}

/// Creates a detailed error message for a function with wrong signature.
///
/// For example, a query like `select round(3.14, 1.1);` would yield:
/// ```text
/// Error during planning: No function matches 'round(Float64, Float64)'. You might need to add explicit type casts.
///     Candidate functions:
///     round(Float64, Int64)
///     round(Float32, Int64)
///     round(Float64)
///     round(Float32)
/// ```
pub fn generate_signature_error_msg(
    func_name: &str,
    func_signature: Signature,
    input_expr_types: &[DataType],
) -> String {
    let candidate_signatures = func_signature
        .type_signature
        .to_string_repr()
        .iter()
        .map(|args_str| format!("\t{func_name}({args_str})"))
        .collect::<Vec<String>>()
        .join("\n");

    format!(
            "No function matches the given name and argument types '{}({})'. You might need to add explicit type casts.\n\tCandidate functions:\n{}",
            func_name, TypeSignature::join_types(input_expr_types, ", "), candidate_signatures
        )
}

/// Splits a conjunctive [`Expr`] such as `A AND B AND C` => `[A, B, C]`
///
/// See [`split_conjunction_owned`] for more details and an example.
pub fn split_conjunction(expr: &Expr) -> Vec<&Expr> {
    split_conjunction_impl(expr, vec![])
}

fn split_conjunction_impl<'a>(expr: &'a Expr, mut exprs: Vec<&'a Expr>) -> Vec<&'a Expr> {
    match expr {
        Expr::BinaryExpr(BinaryExpr {
            right,
            op: Operator::And,
            left,
        }) => {
            let exprs = split_conjunction_impl(left, exprs);
            split_conjunction_impl(right, exprs)
        }
        Expr::Alias(Alias { expr, .. }) => split_conjunction_impl(expr, exprs),
        other => {
            exprs.push(other);
            exprs
        }
    }
}

/// Splits an owned conjunctive [`Expr`] such as `A AND B AND C` => `[A, B, C]`
///
/// This is often used to "split" filter expressions such as `col1 = 5
/// AND col2 = 10` into [`col1 = 5`, `col2 = 10`];
///
/// # Example
/// ```
/// # use datafusion_expr::{col, lit};
/// # use datafusion_expr::utils::split_conjunction_owned;
/// // a=1 AND b=2
/// let expr = col("a").eq(lit(1)).and(col("b").eq(lit(2)));
///
/// // [a=1, b=2]
/// let split = vec![
///   col("a").eq(lit(1)),
///   col("b").eq(lit(2)),
/// ];
///
/// // use split_conjunction_owned to split them
/// assert_eq!(split_conjunction_owned(expr), split);
/// ```
pub fn split_conjunction_owned(expr: Expr) -> Vec<Expr> {
    split_binary_owned(expr, Operator::And)
}

/// Splits an owned binary operator tree [`Expr`] such as `A <OP> B <OP> C` => `[A, B, C]`
///
/// This is often used to "split" expressions such as `col1 = 5
/// AND col2 = 10` into [`col1 = 5`, `col2 = 10`];
///
/// # Example
/// ```
/// # use datafusion_expr::{col, lit, Operator};
/// # use datafusion_expr::utils::split_binary_owned;
/// # use std::ops::Add;
/// // a=1 + b=2
/// let expr = col("a").eq(lit(1)).add(col("b").eq(lit(2)));
///
/// // [a=1, b=2]
/// let split = vec![
///   col("a").eq(lit(1)),
///   col("b").eq(lit(2)),
/// ];
///
/// // use split_binary_owned to split them
/// assert_eq!(split_binary_owned(expr, Operator::Plus), split);
/// ```
pub fn split_binary_owned(expr: Expr, op: Operator) -> Vec<Expr> {
    split_binary_owned_impl(expr, op, vec![])
}

fn split_binary_owned_impl(
    expr: Expr,
    operator: Operator,
    mut exprs: Vec<Expr>,
) -> Vec<Expr> {
    match expr {
        Expr::BinaryExpr(BinaryExpr { right, op, left }) if op == operator => {
            let exprs = split_binary_owned_impl(*left, operator, exprs);
            split_binary_owned_impl(*right, operator, exprs)
        }
        Expr::Alias(Alias { expr, .. }) => {
            split_binary_owned_impl(*expr, operator, exprs)
        }
        other => {
            exprs.push(other);
            exprs
        }
    }
}

/// Splits an binary operator tree [`Expr`] such as `A <OP> B <OP> C` => `[A, B, C]`
///
/// See [`split_binary_owned`] for more details and an example.
pub fn split_binary(expr: &Expr, op: Operator) -> Vec<&Expr> {
    split_binary_impl(expr, op, vec![])
}

fn split_binary_impl<'a>(
    expr: &'a Expr,
    operator: Operator,
    mut exprs: Vec<&'a Expr>,
) -> Vec<&'a Expr> {
    match expr {
        Expr::BinaryExpr(BinaryExpr { right, op, left }) if *op == operator => {
            let exprs = split_binary_impl(left, operator, exprs);
            split_binary_impl(right, operator, exprs)
        }
        Expr::Alias(Alias { expr, .. }) => split_binary_impl(expr, operator, exprs),
        other => {
            exprs.push(other);
            exprs
        }
    }
}

/// Combines an array of filter expressions into a single filter
/// expression consisting of the input filter expressions joined with
/// logical AND.
///
/// Returns None if the filters array is empty.
///
/// # Example
/// ```
/// # use datafusion_expr::{col, lit};
/// # use datafusion_expr::utils::conjunction;
/// // a=1 AND b=2
/// let expr = col("a").eq(lit(1)).and(col("b").eq(lit(2)));
///
/// // [a=1, b=2]
/// let split = vec![
///   col("a").eq(lit(1)),
///   col("b").eq(lit(2)),
/// ];
///
/// // use conjunction to join them together with `AND`
/// assert_eq!(conjunction(split), Some(expr));
/// ```
pub fn conjunction(filters: impl IntoIterator<Item = Expr>) -> Option<Expr> {
    filters.into_iter().reduce(Expr::and)
}

/// Combines an array of filter expressions into a single filter
/// expression consisting of the input filter expressions joined with
/// logical OR.
///
/// Returns None if the filters array is empty.
///
/// # Example
/// ```
/// # use datafusion_expr::{col, lit};
/// # use datafusion_expr::utils::disjunction;
/// // a=1 OR b=2
/// let expr = col("a").eq(lit(1)).or(col("b").eq(lit(2)));
///
/// // [a=1, b=2]
/// let split = vec![
///   col("a").eq(lit(1)),
///   col("b").eq(lit(2)),
/// ];
///
/// // use disjuncton to join them together with `OR`
/// assert_eq!(disjunction(split), Some(expr));
/// ```
pub fn disjunction(filters: impl IntoIterator<Item = Expr>) -> Option<Expr> {
    filters.into_iter().reduce(Expr::or)
}

/// Returns a new [LogicalPlan] that filters the output of  `plan` with a
/// [LogicalPlan::Filter] with all `predicates` ANDed.
///
/// # Example
/// Before:
/// ```text
/// plan
/// ```
///
/// After:
/// ```text
/// Filter(predicate)
///   plan
/// ```
pub fn add_filter(plan: LogicalPlan, predicates: &[&Expr]) -> Result<LogicalPlan> {
    // reduce filters to a single filter with an AND
    let predicate = predicates
        .iter()
        .skip(1)
        .fold(predicates[0].clone(), |acc, predicate| {
            and(acc, (*predicate).to_owned())
        });

    Ok(LogicalPlan::Filter(Filter::try_new(
        predicate,
        Arc::new(plan),
    )?))
}

/// Looks for correlating expressions: for example, a binary expression with one field from the subquery, and
/// one not in the subquery (closed upon from outer scope)
///
/// # Arguments
///
/// * `exprs` - List of expressions that may or may not be joins
///
/// # Return value
///
/// Tuple of (expressions containing joins, remaining non-join expressions)
pub fn find_join_exprs(exprs: Vec<&Expr>) -> Result<(Vec<Expr>, Vec<Expr>)> {
    let mut joins = vec![];
    let mut others = vec![];
    for filter in exprs.into_iter() {
        // If the expression contains correlated predicates, add it to join filters
        if filter.contains_outer() {
            if !matches!(filter, Expr::BinaryExpr(BinaryExpr{ left, op: Operator::Eq, right }) if left.eq(right))
            {
                joins.push(strip_outer_reference((*filter).clone()));
            }
        } else {
            others.push((*filter).clone());
        }
    }

    Ok((joins, others))
}

/// Returns the first (and only) element in a slice, or an error
///
/// # Arguments
///
/// * `slice` - The slice to extract from
///
/// # Return value
///
/// The first element, or an error
pub fn only_or_err<T>(slice: &[T]) -> Result<&T> {
    match slice {
        [it] => Ok(it),
        [] => plan_err!("No items found!"),
        _ => plan_err!("More than one item found!"),
    }
}

/// merge inputs schema into a single schema.
pub fn merge_schema(inputs: Vec<&LogicalPlan>) -> DFSchema {
    if inputs.len() == 1 {
        inputs[0].schema().as_ref().clone()
    } else {
        inputs.iter().map(|input| input.schema()).fold(
            DFSchema::empty(),
            |mut lhs, rhs| {
                lhs.merge(rhs);
                lhs
            },
        )
    }
}

/// Build state name. State is the intermediate state of the aggregate function.
pub fn format_state_name(name: &str, state_name: &str) -> String {
    format!("{name}[{state_name}]")
}

/// Represents the sensitivity of an aggregate expression to ordering.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum AggregateOrderSensitivity {
    /// Indicates that the aggregate expression is insensitive to ordering.
    /// Ordering at the input is not important for the result of the aggregator.
    Insensitive,
    /// Indicates that the aggregate expression has a hard requirement on ordering.
    /// The aggregator can not produce a correct result unless its ordering
    /// requirement is satisfied.
    HardRequirement,
    /// Indicates that ordering is beneficial for the aggregate expression in terms
    /// of evaluation efficiency. The aggregator can produce its result efficiently
    /// when its required ordering is satisfied; however, it can still produce the
    /// correct result (albeit less efficiently) when its required ordering is not met.
    Beneficial,
}

impl AggregateOrderSensitivity {
    pub fn is_insensitive(&self) -> bool {
        self.eq(&AggregateOrderSensitivity::Insensitive)
    }

    pub fn is_beneficial(&self) -> bool {
        self.eq(&AggregateOrderSensitivity::Beneficial)
    }

    pub fn hard_requires(&self) -> bool {
        self.eq(&AggregateOrderSensitivity::HardRequirement)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{
        col, cube, expr, expr_vec_fmt, grouping_set, lit, rollup,
        test::function_stub::max_udaf, test::function_stub::min_udaf,
        test::function_stub::sum_udaf, Cast, ExprFunctionExt, WindowFrame,
        WindowFunctionDefinition,
    };

    #[test]
    fn test_group_window_expr_by_sort_keys_empty_case() -> Result<()> {
        let result = group_window_expr_by_sort_keys(vec![])?;
        let expected: Vec<(WindowSortKey, Vec<Expr>)> = vec![];
        assert_eq!(expected, result);
        Ok(())
    }

    #[test]
    fn test_group_window_expr_by_sort_keys_empty_window() -> Result<()> {
        let max1 = Expr::WindowFunction(expr::WindowFunction::new(
            WindowFunctionDefinition::AggregateUDF(max_udaf()),
            vec![col("name")],
        ));
        let max2 = Expr::WindowFunction(expr::WindowFunction::new(
            WindowFunctionDefinition::AggregateUDF(max_udaf()),
            vec![col("name")],
        ));
        let min3 = Expr::WindowFunction(expr::WindowFunction::new(
            WindowFunctionDefinition::AggregateUDF(min_udaf()),
            vec![col("name")],
        ));
        let sum4 = Expr::WindowFunction(expr::WindowFunction::new(
            WindowFunctionDefinition::AggregateUDF(sum_udaf()),
            vec![col("age")],
        ));
        let exprs = &[max1.clone(), max2.clone(), min3.clone(), sum4.clone()];
        let result = group_window_expr_by_sort_keys(exprs.to_vec())?;
        let key = vec![];
        let expected: Vec<(WindowSortKey, Vec<Expr>)> =
            vec![(key, vec![max1, max2, min3, sum4])];
        assert_eq!(expected, result);
        Ok(())
    }

    #[test]
    fn test_group_window_expr_by_sort_keys() -> Result<()> {
        let age_asc = Expr::Sort(expr::Sort::new(Box::new(col("age")), true, true));
        let name_desc = Expr::Sort(expr::Sort::new(Box::new(col("name")), false, true));
        let created_at_desc =
            Expr::Sort(expr::Sort::new(Box::new(col("created_at")), false, true));
        let max1 = Expr::WindowFunction(expr::WindowFunction::new(
            WindowFunctionDefinition::AggregateUDF(max_udaf()),
            vec![col("name")],
        ))
        .order_by(vec![age_asc.clone(), name_desc.clone()])
        .build()
        .unwrap();
        let max2 = Expr::WindowFunction(expr::WindowFunction::new(
            WindowFunctionDefinition::AggregateUDF(max_udaf()),
            vec![col("name")],
        ));
        let min3 = Expr::WindowFunction(expr::WindowFunction::new(
            WindowFunctionDefinition::AggregateUDF(min_udaf()),
            vec![col("name")],
        ))
        .order_by(vec![age_asc.clone(), name_desc.clone()])
        .build()
        .unwrap();
        let sum4 = Expr::WindowFunction(expr::WindowFunction::new(
            WindowFunctionDefinition::AggregateUDF(sum_udaf()),
            vec![col("age")],
        ))
        .order_by(vec![
            name_desc.clone(),
            age_asc.clone(),
            created_at_desc.clone(),
        ])
        .build()
        .unwrap();
        // FIXME use as_ref
        let exprs = &[max1.clone(), max2.clone(), min3.clone(), sum4.clone()];
        let result = group_window_expr_by_sort_keys(exprs.to_vec())?;

        let key1 = vec![(age_asc.clone(), false), (name_desc.clone(), false)];
        let key2 = vec![];
        let key3 = vec![
            (name_desc, false),
            (age_asc, false),
            (created_at_desc, false),
        ];

        let expected: Vec<(WindowSortKey, Vec<Expr>)> = vec![
            (key1, vec![max1, min3]),
            (key2, vec![max2]),
            (key3, vec![sum4]),
        ];
        assert_eq!(expected, result);
        Ok(())
    }

    #[test]
    fn test_find_sort_exprs() -> Result<()> {
        let exprs = &[
            Expr::WindowFunction(expr::WindowFunction::new(
                WindowFunctionDefinition::AggregateUDF(max_udaf()),
                vec![col("name")],
            ))
            .order_by(vec![
                Expr::Sort(expr::Sort::new(Box::new(col("age")), true, true)),
                Expr::Sort(expr::Sort::new(Box::new(col("name")), false, true)),
            ])
            .window_frame(WindowFrame::new(Some(false)))
            .build()
            .unwrap(),
            Expr::WindowFunction(expr::WindowFunction::new(
                WindowFunctionDefinition::AggregateUDF(sum_udaf()),
                vec![col("age")],
            ))
            .order_by(vec![
                Expr::Sort(expr::Sort::new(Box::new(col("name")), false, true)),
                Expr::Sort(expr::Sort::new(Box::new(col("age")), true, true)),
                Expr::Sort(expr::Sort::new(Box::new(col("created_at")), false, true)),
            ])
            .window_frame(WindowFrame::new(Some(false)))
            .build()
            .unwrap(),
        ];
        let expected = vec![
            Expr::Sort(expr::Sort::new(Box::new(col("age")), true, true)),
            Expr::Sort(expr::Sort::new(Box::new(col("name")), false, true)),
            Expr::Sort(expr::Sort::new(Box::new(col("created_at")), false, true)),
        ];
        let result = find_sort_exprs(exprs);
        assert_eq!(expected, result);
        Ok(())
    }

    #[test]
    fn avoid_generate_duplicate_sort_keys() -> Result<()> {
        let asc_or_desc = [true, false];
        let nulls_first_or_last = [true, false];
        let partition_by = &[col("age"), col("name"), col("created_at")];
        for asc_ in asc_or_desc {
            for nulls_first_ in nulls_first_or_last {
                let order_by = &[
                    Expr::Sort(Sort {
                        expr: Box::new(col("age")),
                        asc: asc_,
                        nulls_first: nulls_first_,
                    }),
                    Expr::Sort(Sort {
                        expr: Box::new(col("name")),
                        asc: asc_,
                        nulls_first: nulls_first_,
                    }),
                ];

                let expected = vec![
                    (
                        Expr::Sort(Sort {
                            expr: Box::new(col("age")),
                            asc: asc_,
                            nulls_first: nulls_first_,
                        }),
                        true,
                    ),
                    (
                        Expr::Sort(Sort {
                            expr: Box::new(col("name")),
                            asc: asc_,
                            nulls_first: nulls_first_,
                        }),
                        true,
                    ),
                    (
                        Expr::Sort(Sort {
                            expr: Box::new(col("created_at")),
                            asc: true,
                            nulls_first: false,
                        }),
                        true,
                    ),
                ];
                let result = generate_sort_key(partition_by, order_by)?;
                assert_eq!(expected, result);
            }
        }
        Ok(())
    }

    #[test]
    fn test_enumerate_grouping_sets() -> Result<()> {
        let multi_cols = vec![col("col1"), col("col2"), col("col3")];
        let simple_col = col("simple_col");
        let cube = cube(multi_cols.clone());
        let rollup = rollup(multi_cols.clone());
        let grouping_set = grouping_set(vec![multi_cols]);

        // 1. col
        let sets = enumerate_grouping_sets(vec![simple_col.clone()])?;
        let result = format!("[{}]", expr_vec_fmt!(sets));
        assert_eq!("[simple_col]", &result);

        // 2. cube
        let sets = enumerate_grouping_sets(vec![cube.clone()])?;
        let result = format!("[{}]", expr_vec_fmt!(sets));
        assert_eq!("[CUBE (col1, col2, col3)]", &result);

        // 3. rollup
        let sets = enumerate_grouping_sets(vec![rollup.clone()])?;
        let result = format!("[{}]", expr_vec_fmt!(sets));
        assert_eq!("[ROLLUP (col1, col2, col3)]", &result);

        // 4. col + cube
        let sets = enumerate_grouping_sets(vec![simple_col.clone(), cube.clone()])?;
        let result = format!("[{}]", expr_vec_fmt!(sets));
        assert_eq!(
            "[GROUPING SETS (\
            (simple_col), \
            (simple_col, col1), \
            (simple_col, col2), \
            (simple_col, col1, col2), \
            (simple_col, col3), \
            (simple_col, col1, col3), \
            (simple_col, col2, col3), \
            (simple_col, col1, col2, col3))]",
            &result
        );

        // 5. col + rollup
        let sets = enumerate_grouping_sets(vec![simple_col.clone(), rollup.clone()])?;
        let result = format!("[{}]", expr_vec_fmt!(sets));
        assert_eq!(
            "[GROUPING SETS (\
            (simple_col), \
            (simple_col, col1), \
            (simple_col, col1, col2), \
            (simple_col, col1, col2, col3))]",
            &result
        );

        // 6. col + grouping_set
        let sets =
            enumerate_grouping_sets(vec![simple_col.clone(), grouping_set.clone()])?;
        let result = format!("[{}]", expr_vec_fmt!(sets));
        assert_eq!(
            "[GROUPING SETS (\
            (simple_col, col1, col2, col3))]",
            &result
        );

        // 7. col + grouping_set + rollup
        let sets = enumerate_grouping_sets(vec![
            simple_col.clone(),
            grouping_set,
            rollup.clone(),
        ])?;
        let result = format!("[{}]", expr_vec_fmt!(sets));
        assert_eq!(
            "[GROUPING SETS (\
            (simple_col, col1, col2, col3), \
            (simple_col, col1, col2, col3, col1), \
            (simple_col, col1, col2, col3, col1, col2), \
            (simple_col, col1, col2, col3, col1, col2, col3))]",
            &result
        );

        // 8. col + cube + rollup
        let sets = enumerate_grouping_sets(vec![simple_col, cube, rollup])?;
        let result = format!("[{}]", expr_vec_fmt!(sets));
        assert_eq!(
            "[GROUPING SETS (\
            (simple_col), \
            (simple_col, col1), \
            (simple_col, col1, col2), \
            (simple_col, col1, col2, col3), \
            (simple_col, col1), \
            (simple_col, col1, col1), \
            (simple_col, col1, col1, col2), \
            (simple_col, col1, col1, col2, col3), \
            (simple_col, col2), \
            (simple_col, col2, col1), \
            (simple_col, col2, col1, col2), \
            (simple_col, col2, col1, col2, col3), \
            (simple_col, col1, col2), \
            (simple_col, col1, col2, col1), \
            (simple_col, col1, col2, col1, col2), \
            (simple_col, col1, col2, col1, col2, col3), \
            (simple_col, col3), \
            (simple_col, col3, col1), \
            (simple_col, col3, col1, col2), \
            (simple_col, col3, col1, col2, col3), \
            (simple_col, col1, col3), \
            (simple_col, col1, col3, col1), \
            (simple_col, col1, col3, col1, col2), \
            (simple_col, col1, col3, col1, col2, col3), \
            (simple_col, col2, col3), \
            (simple_col, col2, col3, col1), \
            (simple_col, col2, col3, col1, col2), \
            (simple_col, col2, col3, col1, col2, col3), \
            (simple_col, col1, col2, col3), \
            (simple_col, col1, col2, col3, col1), \
            (simple_col, col1, col2, col3, col1, col2), \
            (simple_col, col1, col2, col3, col1, col2, col3))]",
            &result
        );

        Ok(())
    }
    #[test]
    fn test_split_conjunction() {
        let expr = col("a");
        let result = split_conjunction(&expr);
        assert_eq!(result, vec![&expr]);
    }

    #[test]
    fn test_split_conjunction_two() {
        let expr = col("a").eq(lit(5)).and(col("b"));
        let expr1 = col("a").eq(lit(5));
        let expr2 = col("b");

        let result = split_conjunction(&expr);
        assert_eq!(result, vec![&expr1, &expr2]);
    }

    #[test]
    fn test_split_conjunction_alias() {
        let expr = col("a").eq(lit(5)).and(col("b").alias("the_alias"));
        let expr1 = col("a").eq(lit(5));
        let expr2 = col("b"); // has no alias

        let result = split_conjunction(&expr);
        assert_eq!(result, vec![&expr1, &expr2]);
    }

    #[test]
    fn test_split_conjunction_or() {
        let expr = col("a").eq(lit(5)).or(col("b"));
        let result = split_conjunction(&expr);
        assert_eq!(result, vec![&expr]);
    }

    #[test]
    fn test_split_binary_owned() {
        let expr = col("a");
        assert_eq!(split_binary_owned(expr.clone(), Operator::And), vec![expr]);
    }

    #[test]
    fn test_split_binary_owned_two() {
        assert_eq!(
            split_binary_owned(col("a").eq(lit(5)).and(col("b")), Operator::And),
            vec![col("a").eq(lit(5)), col("b")]
        );
    }

    #[test]
    fn test_split_binary_owned_different_op() {
        let expr = col("a").eq(lit(5)).or(col("b"));
        assert_eq!(
            // expr is connected by OR, but pass in AND
            split_binary_owned(expr.clone(), Operator::And),
            vec![expr]
        );
    }

    #[test]
    fn test_split_conjunction_owned() {
        let expr = col("a");
        assert_eq!(split_conjunction_owned(expr.clone()), vec![expr]);
    }

    #[test]
    fn test_split_conjunction_owned_two() {
        assert_eq!(
            split_conjunction_owned(col("a").eq(lit(5)).and(col("b"))),
            vec![col("a").eq(lit(5)), col("b")]
        );
    }

    #[test]
    fn test_split_conjunction_owned_alias() {
        assert_eq!(
            split_conjunction_owned(col("a").eq(lit(5)).and(col("b").alias("the_alias"))),
            vec![
                col("a").eq(lit(5)),
                // no alias on b
                col("b"),
            ]
        );
    }

    #[test]
    fn test_conjunction_empty() {
        assert_eq!(conjunction(vec![]), None);
    }

    #[test]
    fn test_conjunction() {
        // `[A, B, C]`
        let expr = conjunction(vec![col("a"), col("b"), col("c")]);

        // --> `(A AND B) AND C`
        assert_eq!(expr, Some(col("a").and(col("b")).and(col("c"))));

        // which is different than `A AND (B AND C)`
        assert_ne!(expr, Some(col("a").and(col("b").and(col("c")))));
    }

    #[test]
    fn test_disjunction_empty() {
        assert_eq!(disjunction(vec![]), None);
    }

    #[test]
    fn test_disjunction() {
        // `[A, B, C]`
        let expr = disjunction(vec![col("a"), col("b"), col("c")]);

        // --> `(A OR B) OR C`
        assert_eq!(expr, Some(col("a").or(col("b")).or(col("c"))));

        // which is different than `A OR (B OR C)`
        assert_ne!(expr, Some(col("a").or(col("b").or(col("c")))));
    }

    #[test]
    fn test_split_conjunction_owned_or() {
        let expr = col("a").eq(lit(5)).or(col("b"));
        assert_eq!(split_conjunction_owned(expr.clone()), vec![expr]);
    }

    #[test]
    fn test_collect_expr() -> Result<()> {
        let mut accum: HashSet<Column> = HashSet::new();
        expr_to_columns(
            &Expr::Cast(Cast::new(Box::new(col("a")), DataType::Float64)),
            &mut accum,
        )?;
        expr_to_columns(
            &Expr::Cast(Cast::new(Box::new(col("a")), DataType::Float64)),
            &mut accum,
        )?;
        assert_eq!(1, accum.len());
        assert!(accum.contains(&Column::from_name("a")));
        Ok(())
    }
}