1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! [`AggregateUDF`]: User Defined Aggregate Functions

use std::any::Any;
use std::fmt::{self, Debug, Formatter};
use std::hash::{DefaultHasher, Hash, Hasher};
use std::sync::Arc;
use std::vec;

use arrow::datatypes::{DataType, Field};

use datafusion_common::{exec_err, not_impl_err, Result};

use crate::expr::AggregateFunction;
use crate::function::{
    AccumulatorArgs, AggregateFunctionSimplification, StateFieldsArgs,
};
use crate::groups_accumulator::GroupsAccumulator;
use crate::utils::format_state_name;
use crate::utils::AggregateOrderSensitivity;
use crate::{Accumulator, Expr};
use crate::{AccumulatorFactoryFunction, ReturnTypeFunction, Signature};

/// Logical representation of a user-defined [aggregate function] (UDAF).
///
/// An aggregate function combines the values from multiple input rows
/// into a single output "aggregate" (summary) row. It is different
/// from a scalar function because it is stateful across batches. User
/// defined aggregate functions can be used as normal SQL aggregate
/// functions (`GROUP BY` clause) as well as window functions (`OVER`
/// clause).
///
/// `AggregateUDF` provides DataFusion the information needed to plan and call
/// aggregate functions, including name, type information, and a factory
/// function to create an [`Accumulator`] instance, to perform the actual
/// aggregation.
///
/// For more information, please see [the examples]:
///
/// 1. For simple use cases, use [`create_udaf`] (examples in [`simple_udaf.rs`]).
///
/// 2. For advanced use cases, use [`AggregateUDFImpl`] which provides full API
///    access (examples in [`advanced_udaf.rs`]).
///
/// # API Note
/// This is a separate struct from `AggregateUDFImpl` to maintain backwards
/// compatibility with the older API.
///
/// [the examples]: https://github.com/apache/datafusion/tree/main/datafusion-examples#single-process
/// [aggregate function]: https://en.wikipedia.org/wiki/Aggregate_function
/// [`Accumulator`]: crate::Accumulator
/// [`create_udaf`]: crate::expr_fn::create_udaf
/// [`simple_udaf.rs`]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/simple_udaf.rs
/// [`advanced_udaf.rs`]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/advanced_udaf.rs
#[derive(Debug, Clone)]
pub struct AggregateUDF {
    inner: Arc<dyn AggregateUDFImpl>,
}

impl PartialEq for AggregateUDF {
    fn eq(&self, other: &Self) -> bool {
        self.inner.equals(other.inner.as_ref())
    }
}

impl Eq for AggregateUDF {}

impl Hash for AggregateUDF {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.inner.hash_value().hash(state)
    }
}

impl fmt::Display for AggregateUDF {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        write!(f, "{}", self.name())
    }
}

impl AggregateUDF {
    /// Create a new AggregateUDF
    ///
    /// See  [`AggregateUDFImpl`] for a more convenient way to create a
    /// `AggregateUDF` using trait objects
    #[deprecated(since = "34.0.0", note = "please implement AggregateUDFImpl instead")]
    pub fn new(
        name: &str,
        signature: &Signature,
        return_type: &ReturnTypeFunction,
        accumulator: &AccumulatorFactoryFunction,
    ) -> Self {
        Self::new_from_impl(AggregateUDFLegacyWrapper {
            name: name.to_owned(),
            signature: signature.clone(),
            return_type: Arc::clone(return_type),
            accumulator: Arc::clone(accumulator),
        })
    }

    /// Create a new `AggregateUDF` from a `[AggregateUDFImpl]` trait object
    ///
    /// Note this is the same as using the `From` impl (`AggregateUDF::from`)
    pub fn new_from_impl<F>(fun: F) -> AggregateUDF
    where
        F: AggregateUDFImpl + 'static,
    {
        Self {
            inner: Arc::new(fun),
        }
    }

    /// Return the underlying [`AggregateUDFImpl`] trait object for this function
    pub fn inner(&self) -> &Arc<dyn AggregateUDFImpl> {
        &self.inner
    }

    /// Adds additional names that can be used to invoke this function, in
    /// addition to `name`
    ///
    /// If you implement [`AggregateUDFImpl`] directly you should return aliases directly.
    pub fn with_aliases(self, aliases: impl IntoIterator<Item = &'static str>) -> Self {
        Self::new_from_impl(AliasedAggregateUDFImpl::new(
            Arc::clone(&self.inner),
            aliases,
        ))
    }

    /// creates an [`Expr`] that calls the aggregate function.
    ///
    /// This utility allows using the UDAF without requiring access to
    /// the registry, such as with the DataFrame API.
    pub fn call(&self, args: Vec<Expr>) -> Expr {
        Expr::AggregateFunction(AggregateFunction::new_udf(
            Arc::new(self.clone()),
            args,
            false,
            None,
            None,
            None,
        ))
    }

    /// Returns this function's name
    ///
    /// See [`AggregateUDFImpl::name`] for more details.
    pub fn name(&self) -> &str {
        self.inner.name()
    }

    /// Returns the aliases for this function.
    pub fn aliases(&self) -> &[String] {
        self.inner.aliases()
    }

    /// Returns this function's signature (what input types are accepted)
    ///
    /// See [`AggregateUDFImpl::signature`] for more details.
    pub fn signature(&self) -> &Signature {
        self.inner.signature()
    }

    /// Return the type of the function given its input types
    ///
    /// See [`AggregateUDFImpl::return_type`] for more details.
    pub fn return_type(&self, args: &[DataType]) -> Result<DataType> {
        self.inner.return_type(args)
    }

    /// Return an accumulator the given aggregate, given its return datatype
    pub fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
        self.inner.accumulator(acc_args)
    }

    /// Return the fields used to store the intermediate state for this aggregator, given
    /// the name of the aggregate, value type and ordering fields. See [`AggregateUDFImpl::state_fields`]
    /// for more details.
    ///
    /// This is used to support multi-phase aggregations
    pub fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<Field>> {
        self.inner.state_fields(args)
    }

    /// See [`AggregateUDFImpl::groups_accumulator_supported`] for more details.
    pub fn groups_accumulator_supported(&self, args: AccumulatorArgs) -> bool {
        self.inner.groups_accumulator_supported(args)
    }

    /// See [`AggregateUDFImpl::create_groups_accumulator`] for more details.
    pub fn create_groups_accumulator(
        &self,
        args: AccumulatorArgs,
    ) -> Result<Box<dyn GroupsAccumulator>> {
        self.inner.create_groups_accumulator(args)
    }

    pub fn create_sliding_accumulator(
        &self,
        args: AccumulatorArgs,
    ) -> Result<Box<dyn Accumulator>> {
        self.inner.create_sliding_accumulator(args)
    }

    pub fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> {
        self.inner.coerce_types(arg_types)
    }

    /// See [`AggregateUDFImpl::with_beneficial_ordering`] for more details.
    pub fn with_beneficial_ordering(
        self,
        beneficial_ordering: bool,
    ) -> Result<Option<AggregateUDF>> {
        self.inner
            .with_beneficial_ordering(beneficial_ordering)
            .map(|updated_udf| updated_udf.map(|udf| Self { inner: udf }))
    }

    /// Gets the order sensitivity of the UDF. See [`AggregateOrderSensitivity`]
    /// for possible options.
    pub fn order_sensitivity(&self) -> AggregateOrderSensitivity {
        self.inner.order_sensitivity()
    }

    /// Reserves the `AggregateUDF` (e.g. returns the `AggregateUDF` that will
    /// generate same result with this `AggregateUDF` when iterated in reverse
    /// order, and `None` if there is no such `AggregateUDF`).
    pub fn reverse_udf(&self) -> ReversedUDAF {
        self.inner.reverse_expr()
    }

    /// Do the function rewrite
    ///
    /// See [`AggregateUDFImpl::simplify`] for more details.
    pub fn simplify(&self) -> Option<AggregateFunctionSimplification> {
        self.inner.simplify()
    }

    /// Returns true if the function is max, false if the function is min
    /// None in all other cases, used in certain optimizations or
    /// or aggregate
    ///
    pub fn is_descending(&self) -> Option<bool> {
        self.inner.is_descending()
    }
}

impl<F> From<F> for AggregateUDF
where
    F: AggregateUDFImpl + Send + Sync + 'static,
{
    fn from(fun: F) -> Self {
        Self::new_from_impl(fun)
    }
}

/// Trait for implementing [`AggregateUDF`].
///
/// This trait exposes the full API for implementing user defined aggregate functions and
/// can be used to implement any function.
///
/// See [`advanced_udaf.rs`] for a full example with complete implementation and
/// [`AggregateUDF`] for other available options.
///
/// [`advanced_udaf.rs`]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/advanced_udaf.rs
///
/// # Basic Example
/// ```
/// # use std::any::Any;
/// # use arrow::datatypes::DataType;
/// # use datafusion_common::{DataFusionError, plan_err, Result};
/// # use datafusion_expr::{col, ColumnarValue, Signature, Volatility, Expr};
/// # use datafusion_expr::{AggregateUDFImpl, AggregateUDF, Accumulator, function::{AccumulatorArgs, StateFieldsArgs}};
/// # use arrow::datatypes::Schema;
/// # use arrow::datatypes::Field;
/// #[derive(Debug, Clone)]
/// struct GeoMeanUdf {
///   signature: Signature
/// }
///
/// impl GeoMeanUdf {
///   fn new() -> Self {
///     Self {
///       signature: Signature::uniform(1, vec![DataType::Float64], Volatility::Immutable)
///      }
///   }
/// }
///
/// /// Implement the AggregateUDFImpl trait for GeoMeanUdf
/// impl AggregateUDFImpl for GeoMeanUdf {
///    fn as_any(&self) -> &dyn Any { self }
///    fn name(&self) -> &str { "geo_mean" }
///    fn signature(&self) -> &Signature { &self.signature }
///    fn return_type(&self, args: &[DataType]) -> Result<DataType> {
///      if !matches!(args.get(0), Some(&DataType::Float64)) {
///        return plan_err!("add_one only accepts Float64 arguments");
///      }
///      Ok(DataType::Float64)
///    }
///    // This is the accumulator factory; DataFusion uses it to create new accumulators.
///    fn accumulator(&self, _acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> { unimplemented!() }
///    fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<Field>> {
///        Ok(vec![
///             Field::new("value", args.return_type.clone(), true),
///             Field::new("ordering", DataType::UInt32, true)
///        ])
///    }
/// }
///
/// // Create a new AggregateUDF from the implementation
/// let geometric_mean = AggregateUDF::from(GeoMeanUdf::new());
///
/// // Call the function `geo_mean(col)`
/// let expr = geometric_mean.call(vec![col("a")]);
/// ```
pub trait AggregateUDFImpl: Debug + Send + Sync {
    /// Returns this object as an [`Any`] trait object
    fn as_any(&self) -> &dyn Any;

    /// Returns this function's name
    fn name(&self) -> &str;

    /// Returns the function's [`Signature`] for information about what input
    /// types are accepted and the function's Volatility.
    fn signature(&self) -> &Signature;

    /// What [`DataType`] will be returned by this function, given the types of
    /// the arguments
    fn return_type(&self, arg_types: &[DataType]) -> Result<DataType>;

    /// Return a new [`Accumulator`] that aggregates values for a specific
    /// group during query execution.
    ///
    /// acc_args: [`AccumulatorArgs`] contains information about how the
    /// aggregate function was called.
    fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>>;

    /// Return the fields used to store the intermediate state of this accumulator.
    ///
    /// See [`Accumulator::state`] for background information.
    ///
    /// args:  [`StateFieldsArgs`] contains arguments passed to the
    /// aggregate function's accumulator.
    ///
    /// # Notes:
    ///
    /// The default implementation returns a single state field named `name`
    /// with the same type as `value_type`. This is suitable for aggregates such
    /// as `SUM` or `MIN` where partial state can be combined by applying the
    /// same aggregate.
    ///
    /// For aggregates such as `AVG` where the partial state is more complex
    /// (e.g. a COUNT and a SUM), this method is used to define the additional
    /// fields.
    ///
    /// The name of the fields must be unique within the query and thus should
    /// be derived from `name`. See [`format_state_name`] for a utility function
    /// to generate a unique name.
    fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<Field>> {
        let fields = vec![Field::new(
            format_state_name(args.name, "value"),
            args.return_type.clone(),
            true,
        )];

        Ok(fields
            .into_iter()
            .chain(args.ordering_fields.to_vec())
            .collect())
    }

    /// If the aggregate expression has a specialized
    /// [`GroupsAccumulator`] implementation. If this returns true,
    /// `[Self::create_groups_accumulator]` will be called.
    ///
    /// # Notes
    ///
    /// Even if this function returns true, DataFusion will still use
    /// [`Self::accumulator`] for certain queries, such as when this aggregate is
    /// used as a window function or when there no GROUP BY columns in the
    /// query.
    fn groups_accumulator_supported(&self, _args: AccumulatorArgs) -> bool {
        false
    }

    /// Return a specialized [`GroupsAccumulator`] that manages state
    /// for all groups.
    ///
    /// For maximum performance, a [`GroupsAccumulator`] should be
    /// implemented in addition to [`Accumulator`].
    fn create_groups_accumulator(
        &self,
        _args: AccumulatorArgs,
    ) -> Result<Box<dyn GroupsAccumulator>> {
        not_impl_err!("GroupsAccumulator hasn't been implemented for {self:?} yet")
    }

    /// Returns any aliases (alternate names) for this function.
    ///
    /// Note: `aliases` should only include names other than [`Self::name`].
    /// Defaults to `[]` (no aliases)
    fn aliases(&self) -> &[String] {
        &[]
    }

    /// Sliding accumulator is an alternative accumulator that can be used for
    /// window functions. It has retract method to revert the previous update.
    ///
    /// See [retract_batch] for more details.
    ///
    /// [retract_batch]: crate::accumulator::Accumulator::retract_batch
    fn create_sliding_accumulator(
        &self,
        args: AccumulatorArgs,
    ) -> Result<Box<dyn Accumulator>> {
        self.accumulator(args)
    }

    /// Sets the indicator whether ordering requirements of the AggregateUDFImpl is
    /// satisfied by its input. If this is not the case, UDFs with order
    /// sensitivity `AggregateOrderSensitivity::Beneficial` can still produce
    /// the correct result with possibly more work internally.
    ///
    /// # Returns
    ///
    /// Returns `Ok(Some(updated_udf))` if the process completes successfully.
    /// If the expression can benefit from existing input ordering, but does
    /// not implement the method, returns an error. Order insensitive and hard
    /// requirement aggregators return `Ok(None)`.
    fn with_beneficial_ordering(
        self: Arc<Self>,
        _beneficial_ordering: bool,
    ) -> Result<Option<Arc<dyn AggregateUDFImpl>>> {
        if self.order_sensitivity().is_beneficial() {
            return exec_err!(
                "Should implement with satisfied for aggregator :{:?}",
                self.name()
            );
        }
        Ok(None)
    }

    /// Gets the order sensitivity of the UDF. See [`AggregateOrderSensitivity`]
    /// for possible options.
    fn order_sensitivity(&self) -> AggregateOrderSensitivity {
        // We have hard ordering requirements by default, meaning that order
        // sensitive UDFs need their input orderings to satisfy their ordering
        // requirements to generate correct results.
        AggregateOrderSensitivity::HardRequirement
    }

    /// Optionally apply per-UDaF simplification / rewrite rules.
    ///
    /// This can be used to apply function specific simplification rules during
    /// optimization (e.g. `arrow_cast` --> `Expr::Cast`). The default
    /// implementation does nothing.
    ///
    /// Note that DataFusion handles simplifying arguments and  "constant
    /// folding" (replacing a function call with constant arguments such as
    /// `my_add(1,2) --> 3` ). Thus, there is no need to implement such
    /// optimizations manually for specific UDFs.
    ///
    /// # Returns
    ///
    /// [None] if simplify is not defined or,
    ///
    /// Or, a closure with two arguments:
    /// * 'aggregate_function': [crate::expr::AggregateFunction] for which simplified has been invoked
    /// * 'info': [crate::simplify::SimplifyInfo]
    ///
    /// closure returns simplified [Expr] or an error.
    ///
    fn simplify(&self) -> Option<AggregateFunctionSimplification> {
        None
    }

    /// Returns the reverse expression of the aggregate function.
    fn reverse_expr(&self) -> ReversedUDAF {
        ReversedUDAF::NotSupported
    }

    /// Coerce arguments of a function call to types that the function can evaluate.
    ///
    /// This function is only called if [`AggregateUDFImpl::signature`] returns [`crate::TypeSignature::UserDefined`]. Most
    /// UDAFs should return one of the other variants of `TypeSignature` which handle common
    /// cases
    ///
    /// See the [type coercion module](crate::type_coercion)
    /// documentation for more details on type coercion
    ///
    /// For example, if your function requires a floating point arguments, but the user calls
    /// it like `my_func(1::int)` (aka with `1` as an integer), coerce_types could return `[DataType::Float64]`
    /// to ensure the argument was cast to `1::double`
    ///
    /// # Parameters
    /// * `arg_types`: The argument types of the arguments  this function with
    ///
    /// # Return value
    /// A Vec the same length as `arg_types`. DataFusion will `CAST` the function call
    /// arguments to these specific types.
    fn coerce_types(&self, _arg_types: &[DataType]) -> Result<Vec<DataType>> {
        not_impl_err!("Function {} does not implement coerce_types", self.name())
    }

    /// Return true if this aggregate UDF is equal to the other.
    ///
    /// Allows customizing the equality of aggregate UDFs.
    /// Must be consistent with [`Self::hash_value`] and follow the same rules as [`Eq`]:
    ///
    /// - reflexive: `a.equals(a)`;
    /// - symmetric: `a.equals(b)` implies `b.equals(a)`;
    /// - transitive: `a.equals(b)` and `b.equals(c)` implies `a.equals(c)`.
    ///
    /// By default, compares [`Self::name`] and [`Self::signature`].
    fn equals(&self, other: &dyn AggregateUDFImpl) -> bool {
        self.name() == other.name() && self.signature() == other.signature()
    }

    /// Returns a hash value for this aggregate UDF.
    ///
    /// Allows customizing the hash code of aggregate UDFs. Similarly to [`Hash`] and [`Eq`],
    /// if [`Self::equals`] returns true for two UDFs, their `hash_value`s must be the same.
    ///
    /// By default, hashes [`Self::name`] and [`Self::signature`].
    fn hash_value(&self) -> u64 {
        let hasher = &mut DefaultHasher::new();
        self.name().hash(hasher);
        self.signature().hash(hasher);
        hasher.finish()
    }

    /// If this function is max, return true
    /// if the function is min, return false
    /// otherwise return None (the default)
    ///
    ///
    /// Note: this is used to use special aggregate implementations in certain conditions
    fn is_descending(&self) -> Option<bool> {
        None
    }
}

pub enum ReversedUDAF {
    /// The expression is the same as the original expression, like SUM, COUNT
    Identical,
    /// The expression does not support reverse calculation
    NotSupported,
    /// The expression is different from the original expression
    Reversed(Arc<AggregateUDF>),
}

/// AggregateUDF that adds an alias to the underlying function. It is better to
/// implement [`AggregateUDFImpl`], which supports aliases, directly if possible.
#[derive(Debug)]
struct AliasedAggregateUDFImpl {
    inner: Arc<dyn AggregateUDFImpl>,
    aliases: Vec<String>,
}

impl AliasedAggregateUDFImpl {
    pub fn new(
        inner: Arc<dyn AggregateUDFImpl>,
        new_aliases: impl IntoIterator<Item = &'static str>,
    ) -> Self {
        let mut aliases = inner.aliases().to_vec();
        aliases.extend(new_aliases.into_iter().map(|s| s.to_string()));

        Self { inner, aliases }
    }
}

impl AggregateUDFImpl for AliasedAggregateUDFImpl {
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn name(&self) -> &str {
        self.inner.name()
    }

    fn signature(&self) -> &Signature {
        self.inner.signature()
    }

    fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
        self.inner.return_type(arg_types)
    }

    fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
        self.inner.accumulator(acc_args)
    }

    fn aliases(&self) -> &[String] {
        &self.aliases
    }

    fn equals(&self, other: &dyn AggregateUDFImpl) -> bool {
        if let Some(other) = other.as_any().downcast_ref::<AliasedAggregateUDFImpl>() {
            self.inner.equals(other.inner.as_ref()) && self.aliases == other.aliases
        } else {
            false
        }
    }

    fn hash_value(&self) -> u64 {
        let hasher = &mut DefaultHasher::new();
        self.inner.hash_value().hash(hasher);
        self.aliases.hash(hasher);
        hasher.finish()
    }
}

/// Implementation of [`AggregateUDFImpl`] that wraps the function style pointers
/// of the older API
pub struct AggregateUDFLegacyWrapper {
    /// name
    name: String,
    /// Signature (input arguments)
    signature: Signature,
    /// Return type
    return_type: ReturnTypeFunction,
    /// actual implementation
    accumulator: AccumulatorFactoryFunction,
}

impl Debug for AggregateUDFLegacyWrapper {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        f.debug_struct("AggregateUDF")
            .field("name", &self.name)
            .field("signature", &self.signature)
            .field("fun", &"<FUNC>")
            .finish()
    }
}

impl AggregateUDFImpl for AggregateUDFLegacyWrapper {
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn name(&self) -> &str {
        &self.name
    }

    fn signature(&self) -> &Signature {
        &self.signature
    }

    fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
        // Old API returns an Arc of the datatype for some reason
        let res = (self.return_type)(arg_types)?;
        Ok(res.as_ref().clone())
    }

    fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
        (self.accumulator)(acc_args)
    }
}