datafusion_expr/udaf.rs
1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements. See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership. The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License. You may obtain a copy of the License at
8//
9// http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied. See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18//! [`AggregateUDF`]: User Defined Aggregate Functions
19
20use std::any::Any;
21use std::cmp::Ordering;
22use std::fmt::{self, Debug, Formatter, Write};
23use std::hash::{DefaultHasher, Hash, Hasher};
24use std::sync::Arc;
25use std::vec;
26
27use arrow::datatypes::{DataType, Field};
28
29use datafusion_common::{exec_err, not_impl_err, Result, ScalarValue, Statistics};
30use datafusion_physical_expr_common::physical_expr::PhysicalExpr;
31
32use crate::expr::{
33 schema_name_from_exprs, schema_name_from_exprs_comma_separated_without_space,
34 schema_name_from_sorts, AggregateFunction, AggregateFunctionParams,
35 WindowFunctionParams,
36};
37use crate::function::{
38 AccumulatorArgs, AggregateFunctionSimplification, StateFieldsArgs,
39};
40use crate::groups_accumulator::GroupsAccumulator;
41use crate::utils::format_state_name;
42use crate::utils::AggregateOrderSensitivity;
43use crate::{expr_vec_fmt, Accumulator, Expr};
44use crate::{Documentation, Signature};
45
46/// Logical representation of a user-defined [aggregate function] (UDAF).
47///
48/// An aggregate function combines the values from multiple input rows
49/// into a single output "aggregate" (summary) row. It is different
50/// from a scalar function because it is stateful across batches. User
51/// defined aggregate functions can be used as normal SQL aggregate
52/// functions (`GROUP BY` clause) as well as window functions (`OVER`
53/// clause).
54///
55/// `AggregateUDF` provides DataFusion the information needed to plan and call
56/// aggregate functions, including name, type information, and a factory
57/// function to create an [`Accumulator`] instance, to perform the actual
58/// aggregation.
59///
60/// For more information, please see [the examples]:
61///
62/// 1. For simple use cases, use [`create_udaf`] (examples in [`simple_udaf.rs`]).
63///
64/// 2. For advanced use cases, use [`AggregateUDFImpl`] which provides full API
65/// access (examples in [`advanced_udaf.rs`]).
66///
67/// # API Note
68/// This is a separate struct from `AggregateUDFImpl` to maintain backwards
69/// compatibility with the older API.
70///
71/// [the examples]: https://github.com/apache/datafusion/tree/main/datafusion-examples#single-process
72/// [aggregate function]: https://en.wikipedia.org/wiki/Aggregate_function
73/// [`Accumulator`]: crate::Accumulator
74/// [`create_udaf`]: crate::expr_fn::create_udaf
75/// [`simple_udaf.rs`]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/simple_udaf.rs
76/// [`advanced_udaf.rs`]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/advanced_udaf.rs
77#[derive(Debug, Clone, PartialOrd)]
78pub struct AggregateUDF {
79 inner: Arc<dyn AggregateUDFImpl>,
80}
81
82impl PartialEq for AggregateUDF {
83 fn eq(&self, other: &Self) -> bool {
84 self.inner.equals(other.inner.as_ref())
85 }
86}
87
88impl Eq for AggregateUDF {}
89
90impl Hash for AggregateUDF {
91 fn hash<H: Hasher>(&self, state: &mut H) {
92 self.inner.hash_value().hash(state)
93 }
94}
95
96impl fmt::Display for AggregateUDF {
97 fn fmt(&self, f: &mut Formatter) -> fmt::Result {
98 write!(f, "{}", self.name())
99 }
100}
101
102/// Arguments passed to [`AggregateUDFImpl::value_from_stats`]
103#[derive(Debug)]
104pub struct StatisticsArgs<'a> {
105 /// The statistics of the aggregate input
106 pub statistics: &'a Statistics,
107 /// The resolved return type of the aggregate function
108 pub return_type: &'a DataType,
109 /// Whether the aggregate function is distinct.
110 ///
111 /// ```sql
112 /// SELECT COUNT(DISTINCT column1) FROM t;
113 /// ```
114 pub is_distinct: bool,
115 /// The physical expression of arguments the aggregate function takes.
116 pub exprs: &'a [Arc<dyn PhysicalExpr>],
117}
118
119impl AggregateUDF {
120 /// Create a new `AggregateUDF` from a `[AggregateUDFImpl]` trait object
121 ///
122 /// Note this is the same as using the `From` impl (`AggregateUDF::from`)
123 pub fn new_from_impl<F>(fun: F) -> AggregateUDF
124 where
125 F: AggregateUDFImpl + 'static,
126 {
127 Self::new_from_shared_impl(Arc::new(fun))
128 }
129
130 /// Create a new `AggregateUDF` from a `[AggregateUDFImpl]` trait object
131 pub fn new_from_shared_impl(fun: Arc<dyn AggregateUDFImpl>) -> AggregateUDF {
132 Self { inner: fun }
133 }
134
135 /// Return the underlying [`AggregateUDFImpl`] trait object for this function
136 pub fn inner(&self) -> &Arc<dyn AggregateUDFImpl> {
137 &self.inner
138 }
139
140 /// Adds additional names that can be used to invoke this function, in
141 /// addition to `name`
142 ///
143 /// If you implement [`AggregateUDFImpl`] directly you should return aliases directly.
144 pub fn with_aliases(self, aliases: impl IntoIterator<Item = &'static str>) -> Self {
145 Self::new_from_impl(AliasedAggregateUDFImpl::new(
146 Arc::clone(&self.inner),
147 aliases,
148 ))
149 }
150
151 /// Creates an [`Expr`] that calls the aggregate function.
152 ///
153 /// This utility allows using the UDAF without requiring access to
154 /// the registry, such as with the DataFrame API.
155 pub fn call(&self, args: Vec<Expr>) -> Expr {
156 Expr::AggregateFunction(AggregateFunction::new_udf(
157 Arc::new(self.clone()),
158 args,
159 false,
160 None,
161 None,
162 None,
163 ))
164 }
165
166 /// Returns this function's name
167 ///
168 /// See [`AggregateUDFImpl::name`] for more details.
169 pub fn name(&self) -> &str {
170 self.inner.name()
171 }
172
173 /// See [`AggregateUDFImpl::schema_name`] for more details.
174 pub fn schema_name(&self, params: &AggregateFunctionParams) -> Result<String> {
175 self.inner.schema_name(params)
176 }
177
178 pub fn window_function_schema_name(
179 &self,
180 params: &WindowFunctionParams,
181 ) -> Result<String> {
182 self.inner.window_function_schema_name(params)
183 }
184
185 /// See [`AggregateUDFImpl::display_name`] for more details.
186 pub fn display_name(&self, params: &AggregateFunctionParams) -> Result<String> {
187 self.inner.display_name(params)
188 }
189
190 pub fn window_function_display_name(
191 &self,
192 params: &WindowFunctionParams,
193 ) -> Result<String> {
194 self.inner.window_function_display_name(params)
195 }
196
197 pub fn is_nullable(&self) -> bool {
198 self.inner.is_nullable()
199 }
200
201 /// Returns the aliases for this function.
202 pub fn aliases(&self) -> &[String] {
203 self.inner.aliases()
204 }
205
206 /// Returns this function's signature (what input types are accepted)
207 ///
208 /// See [`AggregateUDFImpl::signature`] for more details.
209 pub fn signature(&self) -> &Signature {
210 self.inner.signature()
211 }
212
213 /// Return the type of the function given its input types
214 ///
215 /// See [`AggregateUDFImpl::return_type`] for more details.
216 pub fn return_type(&self, args: &[DataType]) -> Result<DataType> {
217 self.inner.return_type(args)
218 }
219
220 /// Return an accumulator the given aggregate, given its return datatype
221 pub fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
222 self.inner.accumulator(acc_args)
223 }
224
225 /// Return the fields used to store the intermediate state for this aggregator, given
226 /// the name of the aggregate, value type and ordering fields. See [`AggregateUDFImpl::state_fields`]
227 /// for more details.
228 ///
229 /// This is used to support multi-phase aggregations
230 pub fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<Field>> {
231 self.inner.state_fields(args)
232 }
233
234 /// See [`AggregateUDFImpl::groups_accumulator_supported`] for more details.
235 pub fn groups_accumulator_supported(&self, args: AccumulatorArgs) -> bool {
236 self.inner.groups_accumulator_supported(args)
237 }
238
239 /// See [`AggregateUDFImpl::create_groups_accumulator`] for more details.
240 pub fn create_groups_accumulator(
241 &self,
242 args: AccumulatorArgs,
243 ) -> Result<Box<dyn GroupsAccumulator>> {
244 self.inner.create_groups_accumulator(args)
245 }
246
247 pub fn create_sliding_accumulator(
248 &self,
249 args: AccumulatorArgs,
250 ) -> Result<Box<dyn Accumulator>> {
251 self.inner.create_sliding_accumulator(args)
252 }
253
254 pub fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> {
255 self.inner.coerce_types(arg_types)
256 }
257
258 /// See [`AggregateUDFImpl::with_beneficial_ordering`] for more details.
259 pub fn with_beneficial_ordering(
260 self,
261 beneficial_ordering: bool,
262 ) -> Result<Option<AggregateUDF>> {
263 self.inner
264 .with_beneficial_ordering(beneficial_ordering)
265 .map(|updated_udf| updated_udf.map(|udf| Self { inner: udf }))
266 }
267
268 /// Gets the order sensitivity of the UDF. See [`AggregateOrderSensitivity`]
269 /// for possible options.
270 pub fn order_sensitivity(&self) -> AggregateOrderSensitivity {
271 self.inner.order_sensitivity()
272 }
273
274 /// Reserves the `AggregateUDF` (e.g. returns the `AggregateUDF` that will
275 /// generate same result with this `AggregateUDF` when iterated in reverse
276 /// order, and `None` if there is no such `AggregateUDF`).
277 pub fn reverse_udf(&self) -> ReversedUDAF {
278 self.inner.reverse_expr()
279 }
280
281 /// Do the function rewrite
282 ///
283 /// See [`AggregateUDFImpl::simplify`] for more details.
284 pub fn simplify(&self) -> Option<AggregateFunctionSimplification> {
285 self.inner.simplify()
286 }
287
288 /// Returns true if the function is max, false if the function is min
289 /// None in all other cases, used in certain optimizations for
290 /// or aggregate
291 pub fn is_descending(&self) -> Option<bool> {
292 self.inner.is_descending()
293 }
294
295 /// Return the value of this aggregate function if it can be determined
296 /// entirely from statistics and arguments.
297 ///
298 /// See [`AggregateUDFImpl::value_from_stats`] for more details.
299 pub fn value_from_stats(
300 &self,
301 statistics_args: &StatisticsArgs,
302 ) -> Option<ScalarValue> {
303 self.inner.value_from_stats(statistics_args)
304 }
305
306 /// See [`AggregateUDFImpl::default_value`] for more details.
307 pub fn default_value(&self, data_type: &DataType) -> Result<ScalarValue> {
308 self.inner.default_value(data_type)
309 }
310
311 /// Returns the documentation for this Aggregate UDF.
312 ///
313 /// Documentation can be accessed programmatically as well as
314 /// generating publicly facing documentation.
315 pub fn documentation(&self) -> Option<&Documentation> {
316 self.inner.documentation()
317 }
318}
319
320impl<F> From<F> for AggregateUDF
321where
322 F: AggregateUDFImpl + Send + Sync + 'static,
323{
324 fn from(fun: F) -> Self {
325 Self::new_from_impl(fun)
326 }
327}
328
329/// Trait for implementing [`AggregateUDF`].
330///
331/// This trait exposes the full API for implementing user defined aggregate functions and
332/// can be used to implement any function.
333///
334/// See [`advanced_udaf.rs`] for a full example with complete implementation and
335/// [`AggregateUDF`] for other available options.
336///
337/// [`advanced_udaf.rs`]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/advanced_udaf.rs
338///
339/// # Basic Example
340/// ```
341/// # use std::any::Any;
342/// # use std::sync::LazyLock;
343/// # use arrow::datatypes::DataType;
344/// # use datafusion_common::{DataFusionError, plan_err, Result};
345/// # use datafusion_expr::{col, ColumnarValue, Signature, Volatility, Expr, Documentation};
346/// # use datafusion_expr::{AggregateUDFImpl, AggregateUDF, Accumulator, function::{AccumulatorArgs, StateFieldsArgs}};
347/// # use datafusion_expr::window_doc_sections::DOC_SECTION_AGGREGATE;
348/// # use arrow::datatypes::Schema;
349/// # use arrow::datatypes::Field;
350///
351/// #[derive(Debug, Clone)]
352/// struct GeoMeanUdf {
353/// signature: Signature,
354/// }
355///
356/// impl GeoMeanUdf {
357/// fn new() -> Self {
358/// Self {
359/// signature: Signature::uniform(1, vec![DataType::Float64], Volatility::Immutable),
360/// }
361/// }
362/// }
363///
364/// static DOCUMENTATION: LazyLock<Documentation> = LazyLock::new(|| {
365/// Documentation::builder(DOC_SECTION_AGGREGATE, "calculates a geometric mean", "geo_mean(2.0)")
366/// .with_argument("arg1", "The Float64 number for the geometric mean")
367/// .build()
368/// });
369///
370/// fn get_doc() -> &'static Documentation {
371/// &DOCUMENTATION
372/// }
373///
374/// /// Implement the AggregateUDFImpl trait for GeoMeanUdf
375/// impl AggregateUDFImpl for GeoMeanUdf {
376/// fn as_any(&self) -> &dyn Any { self }
377/// fn name(&self) -> &str { "geo_mean" }
378/// fn signature(&self) -> &Signature { &self.signature }
379/// fn return_type(&self, args: &[DataType]) -> Result<DataType> {
380/// if !matches!(args.get(0), Some(&DataType::Float64)) {
381/// return plan_err!("geo_mean only accepts Float64 arguments");
382/// }
383/// Ok(DataType::Float64)
384/// }
385/// // This is the accumulator factory; DataFusion uses it to create new accumulators.
386/// fn accumulator(&self, _acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> { unimplemented!() }
387/// fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<Field>> {
388/// Ok(vec![
389/// Field::new("value", args.return_type.clone(), true),
390/// Field::new("ordering", DataType::UInt32, true)
391/// ])
392/// }
393/// fn documentation(&self) -> Option<&Documentation> {
394/// Some(get_doc())
395/// }
396/// }
397///
398/// // Create a new AggregateUDF from the implementation
399/// let geometric_mean = AggregateUDF::from(GeoMeanUdf::new());
400///
401/// // Call the function `geo_mean(col)`
402/// let expr = geometric_mean.call(vec![col("a")]);
403/// ```
404pub trait AggregateUDFImpl: Debug + Send + Sync {
405 // Note: When adding any methods (with default implementations), remember to add them also
406 // into the AliasedAggregateUDFImpl below!
407
408 /// Returns this object as an [`Any`] trait object
409 fn as_any(&self) -> &dyn Any;
410
411 /// Returns this function's name
412 fn name(&self) -> &str;
413
414 /// Returns the name of the column this expression would create
415 ///
416 /// See [`Expr::schema_name`] for details
417 ///
418 /// Example of schema_name: count(DISTINCT column1) FILTER (WHERE column2 > 10) ORDER BY [..]
419 fn schema_name(&self, params: &AggregateFunctionParams) -> Result<String> {
420 let AggregateFunctionParams {
421 args,
422 distinct,
423 filter,
424 order_by,
425 null_treatment,
426 } = params;
427
428 let mut schema_name = String::new();
429
430 schema_name.write_fmt(format_args!(
431 "{}({}{})",
432 self.name(),
433 if *distinct { "DISTINCT " } else { "" },
434 schema_name_from_exprs_comma_separated_without_space(args)?
435 ))?;
436
437 if let Some(null_treatment) = null_treatment {
438 schema_name.write_fmt(format_args!(" {}", null_treatment))?;
439 }
440
441 if let Some(filter) = filter {
442 schema_name.write_fmt(format_args!(" FILTER (WHERE {filter})"))?;
443 };
444
445 if let Some(order_by) = order_by {
446 schema_name.write_fmt(format_args!(
447 " ORDER BY [{}]",
448 schema_name_from_sorts(order_by)?
449 ))?;
450 };
451
452 Ok(schema_name)
453 }
454
455 /// Returns the name of the column this expression would create
456 ///
457 /// See [`Expr::schema_name`] for details
458 ///
459 /// Different from `schema_name` in that it is used for window aggregate function
460 ///
461 /// Example of schema_name: count(DISTINCT column1) FILTER (WHERE column2 > 10) [PARTITION BY [..]] [ORDER BY [..]]
462 fn window_function_schema_name(
463 &self,
464 params: &WindowFunctionParams,
465 ) -> Result<String> {
466 let WindowFunctionParams {
467 args,
468 partition_by,
469 order_by,
470 window_frame,
471 null_treatment,
472 } = params;
473
474 let mut schema_name = String::new();
475 schema_name.write_fmt(format_args!(
476 "{}({})",
477 self.name(),
478 schema_name_from_exprs(args)?
479 ))?;
480
481 if let Some(null_treatment) = null_treatment {
482 schema_name.write_fmt(format_args!(" {}", null_treatment))?;
483 }
484
485 if !partition_by.is_empty() {
486 schema_name.write_fmt(format_args!(
487 " PARTITION BY [{}]",
488 schema_name_from_exprs(partition_by)?
489 ))?;
490 }
491
492 if !order_by.is_empty() {
493 schema_name.write_fmt(format_args!(
494 " ORDER BY [{}]",
495 schema_name_from_sorts(order_by)?
496 ))?;
497 };
498
499 schema_name.write_fmt(format_args!(" {window_frame}"))?;
500
501 Ok(schema_name)
502 }
503
504 /// Returns the user-defined display name of function, given the arguments
505 ///
506 /// This can be used to customize the output column name generated by this
507 /// function.
508 ///
509 /// Defaults to `function_name([DISTINCT] column1, column2, ..) [null_treatment] [filter] [order_by [..]]`
510 fn display_name(&self, params: &AggregateFunctionParams) -> Result<String> {
511 let AggregateFunctionParams {
512 args,
513 distinct,
514 filter,
515 order_by,
516 null_treatment,
517 } = params;
518
519 let mut display_name = String::new();
520
521 display_name.write_fmt(format_args!(
522 "{}({}{})",
523 self.name(),
524 if *distinct { "DISTINCT " } else { "" },
525 expr_vec_fmt!(args)
526 ))?;
527
528 if let Some(nt) = null_treatment {
529 display_name.write_fmt(format_args!(" {}", nt))?;
530 }
531 if let Some(fe) = filter {
532 display_name.write_fmt(format_args!(" FILTER (WHERE {fe})"))?;
533 }
534 if let Some(ob) = order_by {
535 display_name.write_fmt(format_args!(
536 " ORDER BY [{}]",
537 ob.iter()
538 .map(|o| format!("{o}"))
539 .collect::<Vec<String>>()
540 .join(", ")
541 ))?;
542 }
543
544 Ok(display_name)
545 }
546
547 /// Returns the user-defined display name of function, given the arguments
548 ///
549 /// This can be used to customize the output column name generated by this
550 /// function.
551 ///
552 /// Different from `display_name` in that it is used for window aggregate function
553 ///
554 /// Defaults to `function_name([DISTINCT] column1, column2, ..) [null_treatment] [partition by [..]] [order_by [..]]`
555 fn window_function_display_name(
556 &self,
557 params: &WindowFunctionParams,
558 ) -> Result<String> {
559 let WindowFunctionParams {
560 args,
561 partition_by,
562 order_by,
563 window_frame,
564 null_treatment,
565 } = params;
566
567 let mut display_name = String::new();
568
569 display_name.write_fmt(format_args!(
570 "{}({})",
571 self.name(),
572 expr_vec_fmt!(args)
573 ))?;
574
575 if let Some(null_treatment) = null_treatment {
576 display_name.write_fmt(format_args!(" {}", null_treatment))?;
577 }
578
579 if !partition_by.is_empty() {
580 display_name.write_fmt(format_args!(
581 " PARTITION BY [{}]",
582 expr_vec_fmt!(partition_by)
583 ))?;
584 }
585
586 if !order_by.is_empty() {
587 display_name
588 .write_fmt(format_args!(" ORDER BY [{}]", expr_vec_fmt!(order_by)))?;
589 };
590
591 display_name.write_fmt(format_args!(
592 " {} BETWEEN {} AND {}",
593 window_frame.units, window_frame.start_bound, window_frame.end_bound
594 ))?;
595
596 Ok(display_name)
597 }
598
599 /// Returns the function's [`Signature`] for information about what input
600 /// types are accepted and the function's Volatility.
601 fn signature(&self) -> &Signature;
602
603 /// What [`DataType`] will be returned by this function, given the types of
604 /// the arguments
605 fn return_type(&self, arg_types: &[DataType]) -> Result<DataType>;
606
607 /// Whether the aggregate function is nullable.
608 ///
609 /// Nullable means that the function could return `null` for any inputs.
610 /// For example, aggregate functions like `COUNT` always return a non null value
611 /// but others like `MIN` will return `NULL` if there is nullable input.
612 /// Note that if the function is declared as *not* nullable, make sure the [`AggregateUDFImpl::default_value`] is `non-null`
613 fn is_nullable(&self) -> bool {
614 true
615 }
616
617 /// Return a new [`Accumulator`] that aggregates values for a specific
618 /// group during query execution.
619 ///
620 /// acc_args: [`AccumulatorArgs`] contains information about how the
621 /// aggregate function was called.
622 fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>>;
623
624 /// Return the fields used to store the intermediate state of this accumulator.
625 ///
626 /// See [`Accumulator::state`] for background information.
627 ///
628 /// args: [`StateFieldsArgs`] contains arguments passed to the
629 /// aggregate function's accumulator.
630 ///
631 /// # Notes:
632 ///
633 /// The default implementation returns a single state field named `name`
634 /// with the same type as `value_type`. This is suitable for aggregates such
635 /// as `SUM` or `MIN` where partial state can be combined by applying the
636 /// same aggregate.
637 ///
638 /// For aggregates such as `AVG` where the partial state is more complex
639 /// (e.g. a COUNT and a SUM), this method is used to define the additional
640 /// fields.
641 ///
642 /// The name of the fields must be unique within the query and thus should
643 /// be derived from `name`. See [`format_state_name`] for a utility function
644 /// to generate a unique name.
645 fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<Field>> {
646 let fields = vec![Field::new(
647 format_state_name(args.name, "value"),
648 args.return_type.clone(),
649 true,
650 )];
651
652 Ok(fields
653 .into_iter()
654 .chain(args.ordering_fields.to_vec())
655 .collect())
656 }
657
658 /// If the aggregate expression has a specialized
659 /// [`GroupsAccumulator`] implementation. If this returns true,
660 /// `[Self::create_groups_accumulator]` will be called.
661 ///
662 /// # Notes
663 ///
664 /// Even if this function returns true, DataFusion will still use
665 /// [`Self::accumulator`] for certain queries, such as when this aggregate is
666 /// used as a window function or when there no GROUP BY columns in the
667 /// query.
668 fn groups_accumulator_supported(&self, _args: AccumulatorArgs) -> bool {
669 false
670 }
671
672 /// Return a specialized [`GroupsAccumulator`] that manages state
673 /// for all groups.
674 ///
675 /// For maximum performance, a [`GroupsAccumulator`] should be
676 /// implemented in addition to [`Accumulator`].
677 fn create_groups_accumulator(
678 &self,
679 _args: AccumulatorArgs,
680 ) -> Result<Box<dyn GroupsAccumulator>> {
681 not_impl_err!("GroupsAccumulator hasn't been implemented for {self:?} yet")
682 }
683
684 /// Returns any aliases (alternate names) for this function.
685 ///
686 /// Note: `aliases` should only include names other than [`Self::name`].
687 /// Defaults to `[]` (no aliases)
688 fn aliases(&self) -> &[String] {
689 &[]
690 }
691
692 /// Sliding accumulator is an alternative accumulator that can be used for
693 /// window functions. It has retract method to revert the previous update.
694 ///
695 /// See [retract_batch] for more details.
696 ///
697 /// [retract_batch]: datafusion_expr_common::accumulator::Accumulator::retract_batch
698 fn create_sliding_accumulator(
699 &self,
700 args: AccumulatorArgs,
701 ) -> Result<Box<dyn Accumulator>> {
702 self.accumulator(args)
703 }
704
705 /// Sets the indicator whether ordering requirements of the AggregateUDFImpl is
706 /// satisfied by its input. If this is not the case, UDFs with order
707 /// sensitivity `AggregateOrderSensitivity::Beneficial` can still produce
708 /// the correct result with possibly more work internally.
709 ///
710 /// # Returns
711 ///
712 /// Returns `Ok(Some(updated_udf))` if the process completes successfully.
713 /// If the expression can benefit from existing input ordering, but does
714 /// not implement the method, returns an error. Order insensitive and hard
715 /// requirement aggregators return `Ok(None)`.
716 fn with_beneficial_ordering(
717 self: Arc<Self>,
718 _beneficial_ordering: bool,
719 ) -> Result<Option<Arc<dyn AggregateUDFImpl>>> {
720 if self.order_sensitivity().is_beneficial() {
721 return exec_err!(
722 "Should implement with satisfied for aggregator :{:?}",
723 self.name()
724 );
725 }
726 Ok(None)
727 }
728
729 /// Gets the order sensitivity of the UDF. See [`AggregateOrderSensitivity`]
730 /// for possible options.
731 fn order_sensitivity(&self) -> AggregateOrderSensitivity {
732 // We have hard ordering requirements by default, meaning that order
733 // sensitive UDFs need their input orderings to satisfy their ordering
734 // requirements to generate correct results.
735 AggregateOrderSensitivity::HardRequirement
736 }
737
738 /// Optionally apply per-UDaF simplification / rewrite rules.
739 ///
740 /// This can be used to apply function specific simplification rules during
741 /// optimization (e.g. `arrow_cast` --> `Expr::Cast`). The default
742 /// implementation does nothing.
743 ///
744 /// Note that DataFusion handles simplifying arguments and "constant
745 /// folding" (replacing a function call with constant arguments such as
746 /// `my_add(1,2) --> 3` ). Thus, there is no need to implement such
747 /// optimizations manually for specific UDFs.
748 ///
749 /// # Returns
750 ///
751 /// [None] if simplify is not defined or,
752 ///
753 /// Or, a closure with two arguments:
754 /// * 'aggregate_function': [crate::expr::AggregateFunction] for which simplified has been invoked
755 /// * 'info': [crate::simplify::SimplifyInfo]
756 ///
757 /// closure returns simplified [Expr] or an error.
758 ///
759 fn simplify(&self) -> Option<AggregateFunctionSimplification> {
760 None
761 }
762
763 /// Returns the reverse expression of the aggregate function.
764 fn reverse_expr(&self) -> ReversedUDAF {
765 ReversedUDAF::NotSupported
766 }
767
768 /// Coerce arguments of a function call to types that the function can evaluate.
769 ///
770 /// This function is only called if [`AggregateUDFImpl::signature`] returns [`crate::TypeSignature::UserDefined`]. Most
771 /// UDAFs should return one of the other variants of `TypeSignature` which handle common
772 /// cases
773 ///
774 /// See the [type coercion module](crate::type_coercion)
775 /// documentation for more details on type coercion
776 ///
777 /// For example, if your function requires a floating point arguments, but the user calls
778 /// it like `my_func(1::int)` (aka with `1` as an integer), coerce_types could return `[DataType::Float64]`
779 /// to ensure the argument was cast to `1::double`
780 ///
781 /// # Parameters
782 /// * `arg_types`: The argument types of the arguments this function with
783 ///
784 /// # Return value
785 /// A Vec the same length as `arg_types`. DataFusion will `CAST` the function call
786 /// arguments to these specific types.
787 fn coerce_types(&self, _arg_types: &[DataType]) -> Result<Vec<DataType>> {
788 not_impl_err!("Function {} does not implement coerce_types", self.name())
789 }
790
791 /// Return true if this aggregate UDF is equal to the other.
792 ///
793 /// Allows customizing the equality of aggregate UDFs.
794 /// Must be consistent with [`Self::hash_value`] and follow the same rules as [`Eq`]:
795 ///
796 /// - reflexive: `a.equals(a)`;
797 /// - symmetric: `a.equals(b)` implies `b.equals(a)`;
798 /// - transitive: `a.equals(b)` and `b.equals(c)` implies `a.equals(c)`.
799 ///
800 /// By default, compares [`Self::name`] and [`Self::signature`].
801 fn equals(&self, other: &dyn AggregateUDFImpl) -> bool {
802 self.name() == other.name() && self.signature() == other.signature()
803 }
804
805 /// Returns a hash value for this aggregate UDF.
806 ///
807 /// Allows customizing the hash code of aggregate UDFs. Similarly to [`Hash`] and [`Eq`],
808 /// if [`Self::equals`] returns true for two UDFs, their `hash_value`s must be the same.
809 ///
810 /// By default, hashes [`Self::name`] and [`Self::signature`].
811 fn hash_value(&self) -> u64 {
812 let hasher = &mut DefaultHasher::new();
813 self.name().hash(hasher);
814 self.signature().hash(hasher);
815 hasher.finish()
816 }
817
818 /// If this function is max, return true
819 /// If the function is min, return false
820 /// Otherwise return None (the default)
821 ///
822 ///
823 /// Note: this is used to use special aggregate implementations in certain conditions
824 fn is_descending(&self) -> Option<bool> {
825 None
826 }
827
828 /// Return the value of this aggregate function if it can be determined
829 /// entirely from statistics and arguments.
830 ///
831 /// Using a [`ScalarValue`] rather than a runtime computation can significantly
832 /// improving query performance.
833 ///
834 /// For example, if the minimum value of column `x` is known to be `42` from
835 /// statistics, then the aggregate `MIN(x)` should return `Some(ScalarValue(42))`
836 fn value_from_stats(&self, _statistics_args: &StatisticsArgs) -> Option<ScalarValue> {
837 None
838 }
839
840 /// Returns default value of the function given the input is all `null`.
841 ///
842 /// Most of the aggregate function return Null if input is Null,
843 /// while `count` returns 0 if input is Null
844 fn default_value(&self, data_type: &DataType) -> Result<ScalarValue> {
845 ScalarValue::try_from(data_type)
846 }
847
848 /// Returns the documentation for this Aggregate UDF.
849 ///
850 /// Documentation can be accessed programmatically as well as
851 /// generating publicly facing documentation.
852 fn documentation(&self) -> Option<&Documentation> {
853 None
854 }
855
856 /// Indicates whether the aggregation function is monotonic as a set
857 /// function. See [`SetMonotonicity`] for details.
858 fn set_monotonicity(&self, _data_type: &DataType) -> SetMonotonicity {
859 SetMonotonicity::NotMonotonic
860 }
861}
862
863impl PartialEq for dyn AggregateUDFImpl {
864 fn eq(&self, other: &Self) -> bool {
865 self.equals(other)
866 }
867}
868
869// Manual implementation of `PartialOrd`
870// There might be some wackiness with it, but this is based on the impl of eq for AggregateUDFImpl
871// https://users.rust-lang.org/t/how-to-compare-two-trait-objects-for-equality/88063/5
872impl PartialOrd for dyn AggregateUDFImpl {
873 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
874 match self.name().partial_cmp(other.name()) {
875 Some(Ordering::Equal) => self.signature().partial_cmp(other.signature()),
876 cmp => cmp,
877 }
878 }
879}
880
881pub enum ReversedUDAF {
882 /// The expression is the same as the original expression, like SUM, COUNT
883 Identical,
884 /// The expression does not support reverse calculation
885 NotSupported,
886 /// The expression is different from the original expression
887 Reversed(Arc<AggregateUDF>),
888}
889
890/// AggregateUDF that adds an alias to the underlying function. It is better to
891/// implement [`AggregateUDFImpl`], which supports aliases, directly if possible.
892#[derive(Debug)]
893struct AliasedAggregateUDFImpl {
894 inner: Arc<dyn AggregateUDFImpl>,
895 aliases: Vec<String>,
896}
897
898impl AliasedAggregateUDFImpl {
899 pub fn new(
900 inner: Arc<dyn AggregateUDFImpl>,
901 new_aliases: impl IntoIterator<Item = &'static str>,
902 ) -> Self {
903 let mut aliases = inner.aliases().to_vec();
904 aliases.extend(new_aliases.into_iter().map(|s| s.to_string()));
905
906 Self { inner, aliases }
907 }
908}
909
910impl AggregateUDFImpl for AliasedAggregateUDFImpl {
911 fn as_any(&self) -> &dyn Any {
912 self
913 }
914
915 fn name(&self) -> &str {
916 self.inner.name()
917 }
918
919 fn signature(&self) -> &Signature {
920 self.inner.signature()
921 }
922
923 fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
924 self.inner.return_type(arg_types)
925 }
926
927 fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
928 self.inner.accumulator(acc_args)
929 }
930
931 fn aliases(&self) -> &[String] {
932 &self.aliases
933 }
934
935 fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<Field>> {
936 self.inner.state_fields(args)
937 }
938
939 fn groups_accumulator_supported(&self, args: AccumulatorArgs) -> bool {
940 self.inner.groups_accumulator_supported(args)
941 }
942
943 fn create_groups_accumulator(
944 &self,
945 args: AccumulatorArgs,
946 ) -> Result<Box<dyn GroupsAccumulator>> {
947 self.inner.create_groups_accumulator(args)
948 }
949
950 fn create_sliding_accumulator(
951 &self,
952 args: AccumulatorArgs,
953 ) -> Result<Box<dyn Accumulator>> {
954 self.inner.accumulator(args)
955 }
956
957 fn with_beneficial_ordering(
958 self: Arc<Self>,
959 beneficial_ordering: bool,
960 ) -> Result<Option<Arc<dyn AggregateUDFImpl>>> {
961 Arc::clone(&self.inner)
962 .with_beneficial_ordering(beneficial_ordering)
963 .map(|udf| {
964 udf.map(|udf| {
965 Arc::new(AliasedAggregateUDFImpl {
966 inner: udf,
967 aliases: self.aliases.clone(),
968 }) as Arc<dyn AggregateUDFImpl>
969 })
970 })
971 }
972
973 fn order_sensitivity(&self) -> AggregateOrderSensitivity {
974 self.inner.order_sensitivity()
975 }
976
977 fn simplify(&self) -> Option<AggregateFunctionSimplification> {
978 self.inner.simplify()
979 }
980
981 fn reverse_expr(&self) -> ReversedUDAF {
982 self.inner.reverse_expr()
983 }
984
985 fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> {
986 self.inner.coerce_types(arg_types)
987 }
988
989 fn equals(&self, other: &dyn AggregateUDFImpl) -> bool {
990 if let Some(other) = other.as_any().downcast_ref::<AliasedAggregateUDFImpl>() {
991 self.inner.equals(other.inner.as_ref()) && self.aliases == other.aliases
992 } else {
993 false
994 }
995 }
996
997 fn hash_value(&self) -> u64 {
998 let hasher = &mut DefaultHasher::new();
999 self.inner.hash_value().hash(hasher);
1000 self.aliases.hash(hasher);
1001 hasher.finish()
1002 }
1003
1004 fn is_descending(&self) -> Option<bool> {
1005 self.inner.is_descending()
1006 }
1007
1008 fn documentation(&self) -> Option<&Documentation> {
1009 self.inner.documentation()
1010 }
1011}
1012
1013// Aggregate UDF doc sections for use in public documentation
1014pub mod aggregate_doc_sections {
1015 use crate::DocSection;
1016
1017 pub fn doc_sections() -> Vec<DocSection> {
1018 vec![
1019 DOC_SECTION_GENERAL,
1020 DOC_SECTION_STATISTICAL,
1021 DOC_SECTION_APPROXIMATE,
1022 ]
1023 }
1024
1025 pub const DOC_SECTION_GENERAL: DocSection = DocSection {
1026 include: true,
1027 label: "General Functions",
1028 description: None,
1029 };
1030
1031 pub const DOC_SECTION_STATISTICAL: DocSection = DocSection {
1032 include: true,
1033 label: "Statistical Functions",
1034 description: None,
1035 };
1036
1037 pub const DOC_SECTION_APPROXIMATE: DocSection = DocSection {
1038 include: true,
1039 label: "Approximate Functions",
1040 description: None,
1041 };
1042}
1043
1044/// Indicates whether an aggregation function is monotonic as a set
1045/// function. A set function is monotonically increasing if its value
1046/// increases as its argument grows (as a set). Formally, `f` is a
1047/// monotonically increasing set function if `f(S) >= f(T)` whenever `S`
1048/// is a superset of `T`.
1049///
1050/// For example `COUNT` and `MAX` are monotonically increasing as their
1051/// values always increase (or stay the same) as new values are seen. On
1052/// the other hand, `MIN` is monotonically decreasing as its value always
1053/// decreases or stays the same as new values are seen.
1054#[derive(Debug, Clone, PartialEq)]
1055pub enum SetMonotonicity {
1056 /// Aggregate value increases or stays the same as the input set grows.
1057 Increasing,
1058 /// Aggregate value decreases or stays the same as the input set grows.
1059 Decreasing,
1060 /// Aggregate value may increase, decrease, or stay the same as the input
1061 /// set grows.
1062 NotMonotonic,
1063}
1064
1065#[cfg(test)]
1066mod test {
1067 use crate::{AggregateUDF, AggregateUDFImpl};
1068 use arrow::datatypes::{DataType, Field};
1069 use datafusion_common::Result;
1070 use datafusion_expr_common::accumulator::Accumulator;
1071 use datafusion_expr_common::signature::{Signature, Volatility};
1072 use datafusion_functions_aggregate_common::accumulator::{
1073 AccumulatorArgs, StateFieldsArgs,
1074 };
1075 use std::any::Any;
1076 use std::cmp::Ordering;
1077
1078 #[derive(Debug, Clone)]
1079 struct AMeanUdf {
1080 signature: Signature,
1081 }
1082
1083 impl AMeanUdf {
1084 fn new() -> Self {
1085 Self {
1086 signature: Signature::uniform(
1087 1,
1088 vec![DataType::Float64],
1089 Volatility::Immutable,
1090 ),
1091 }
1092 }
1093 }
1094
1095 impl AggregateUDFImpl for AMeanUdf {
1096 fn as_any(&self) -> &dyn Any {
1097 self
1098 }
1099 fn name(&self) -> &str {
1100 "a"
1101 }
1102 fn signature(&self) -> &Signature {
1103 &self.signature
1104 }
1105 fn return_type(&self, _args: &[DataType]) -> Result<DataType> {
1106 unimplemented!()
1107 }
1108 fn accumulator(
1109 &self,
1110 _acc_args: AccumulatorArgs,
1111 ) -> Result<Box<dyn Accumulator>> {
1112 unimplemented!()
1113 }
1114 fn state_fields(&self, _args: StateFieldsArgs) -> Result<Vec<Field>> {
1115 unimplemented!()
1116 }
1117 }
1118
1119 #[derive(Debug, Clone)]
1120 struct BMeanUdf {
1121 signature: Signature,
1122 }
1123 impl BMeanUdf {
1124 fn new() -> Self {
1125 Self {
1126 signature: Signature::uniform(
1127 1,
1128 vec![DataType::Float64],
1129 Volatility::Immutable,
1130 ),
1131 }
1132 }
1133 }
1134
1135 impl AggregateUDFImpl for BMeanUdf {
1136 fn as_any(&self) -> &dyn Any {
1137 self
1138 }
1139 fn name(&self) -> &str {
1140 "b"
1141 }
1142 fn signature(&self) -> &Signature {
1143 &self.signature
1144 }
1145 fn return_type(&self, _args: &[DataType]) -> Result<DataType> {
1146 unimplemented!()
1147 }
1148 fn accumulator(
1149 &self,
1150 _acc_args: AccumulatorArgs,
1151 ) -> Result<Box<dyn Accumulator>> {
1152 unimplemented!()
1153 }
1154 fn state_fields(&self, _args: StateFieldsArgs) -> Result<Vec<Field>> {
1155 unimplemented!()
1156 }
1157 }
1158
1159 #[test]
1160 fn test_partial_ord() {
1161 // Test validates that partial ord is defined for AggregateUDF using the name and signature,
1162 // not intended to exhaustively test all possibilities
1163 let a1 = AggregateUDF::from(AMeanUdf::new());
1164 let a2 = AggregateUDF::from(AMeanUdf::new());
1165 assert_eq!(a1.partial_cmp(&a2), Some(Ordering::Equal));
1166
1167 let b1 = AggregateUDF::from(BMeanUdf::new());
1168 assert!(a1 < b1);
1169 assert!(!(a1 == b1));
1170 }
1171}