datafusion_expr/window_state.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Structures used to hold window function state (for implementing WindowUDFs)
use std::{collections::VecDeque, ops::Range, sync::Arc};
use crate::{WindowFrame, WindowFrameBound, WindowFrameUnits};
use arrow::{
array::ArrayRef,
compute::{concat, concat_batches, SortOptions},
datatypes::{DataType, SchemaRef},
record_batch::RecordBatch,
};
use datafusion_common::{
internal_err,
utils::{compare_rows, get_row_at_idx, search_in_slice},
DataFusionError, Result, ScalarValue,
};
/// Holds the state of evaluating a window function
#[derive(Debug)]
pub struct WindowAggState {
/// The range that we calculate the window function
pub window_frame_range: Range<usize>,
pub window_frame_ctx: Option<WindowFrameContext>,
/// The index of the last row that its result is calculated inside the partition record batch buffer.
pub last_calculated_index: usize,
/// The offset of the deleted row number
pub offset_pruned_rows: usize,
/// Stores the results calculated by window frame
pub out_col: ArrayRef,
/// Keeps track of how many rows should be generated to be in sync with input record_batch.
// (For each row in the input record batch we need to generate a window result).
pub n_row_result_missing: usize,
/// Flag indicating whether we have received all data for this partition
pub is_end: bool,
}
impl WindowAggState {
pub fn prune_state(&mut self, n_prune: usize) {
self.window_frame_range = Range {
start: self.window_frame_range.start - n_prune,
end: self.window_frame_range.end - n_prune,
};
self.last_calculated_index -= n_prune;
self.offset_pruned_rows += n_prune;
match self.window_frame_ctx.as_mut() {
// Rows have no state do nothing
Some(WindowFrameContext::Rows(_)) => {}
Some(WindowFrameContext::Range { .. }) => {}
Some(WindowFrameContext::Groups { state, .. }) => {
let mut n_group_to_del = 0;
for (_, end_idx) in &state.group_end_indices {
if n_prune < *end_idx {
break;
}
n_group_to_del += 1;
}
state.group_end_indices.drain(0..n_group_to_del);
state
.group_end_indices
.iter_mut()
.for_each(|(_, start_idx)| *start_idx -= n_prune);
state.current_group_idx -= n_group_to_del;
}
None => {}
};
}
pub fn update(
&mut self,
out_col: &ArrayRef,
partition_batch_state: &PartitionBatchState,
) -> Result<()> {
self.last_calculated_index += out_col.len();
self.out_col = concat(&[&self.out_col, &out_col])?;
self.n_row_result_missing =
partition_batch_state.record_batch.num_rows() - self.last_calculated_index;
self.is_end = partition_batch_state.is_end;
Ok(())
}
pub fn new(out_type: &DataType) -> Result<Self> {
let empty_out_col = ScalarValue::try_from(out_type)?.to_array_of_size(0)?;
Ok(Self {
window_frame_range: Range { start: 0, end: 0 },
window_frame_ctx: None,
last_calculated_index: 0,
offset_pruned_rows: 0,
out_col: empty_out_col,
n_row_result_missing: 0,
is_end: false,
})
}
}
/// This object stores the window frame state for use in incremental calculations.
#[derive(Debug)]
pub enum WindowFrameContext {
/// ROWS frames are inherently stateless.
Rows(Arc<WindowFrame>),
/// RANGE frames are stateful, they store indices specifying where the
/// previous search left off. This amortizes the overall cost to O(n)
/// where n denotes the row count.
Range {
window_frame: Arc<WindowFrame>,
state: WindowFrameStateRange,
},
/// GROUPS frames are stateful, they store group boundaries and indices
/// specifying where the previous search left off. This amortizes the
/// overall cost to O(n) where n denotes the row count.
Groups {
window_frame: Arc<WindowFrame>,
state: WindowFrameStateGroups,
},
}
impl WindowFrameContext {
/// Create a new state object for the given window frame.
pub fn new(window_frame: Arc<WindowFrame>, sort_options: Vec<SortOptions>) -> Self {
match window_frame.units {
WindowFrameUnits::Rows => WindowFrameContext::Rows(window_frame),
WindowFrameUnits::Range => WindowFrameContext::Range {
window_frame,
state: WindowFrameStateRange::new(sort_options),
},
WindowFrameUnits::Groups => WindowFrameContext::Groups {
window_frame,
state: WindowFrameStateGroups::default(),
},
}
}
/// This function calculates beginning/ending indices for the frame of the current row.
pub fn calculate_range(
&mut self,
range_columns: &[ArrayRef],
last_range: &Range<usize>,
length: usize,
idx: usize,
) -> Result<Range<usize>> {
match self {
WindowFrameContext::Rows(window_frame) => {
Self::calculate_range_rows(window_frame, length, idx)
}
// Sort options is used in RANGE mode calculations because the
// ordering or position of NULLs impact range calculations and
// comparison of rows.
WindowFrameContext::Range {
window_frame,
ref mut state,
} => state.calculate_range(
window_frame,
last_range,
range_columns,
length,
idx,
),
// Sort options is not used in GROUPS mode calculations as the
// inequality of two rows indicates a group change, and ordering
// or position of NULLs do not impact inequality.
WindowFrameContext::Groups {
window_frame,
ref mut state,
} => state.calculate_range(window_frame, range_columns, length, idx),
}
}
/// This function calculates beginning/ending indices for the frame of the current row.
fn calculate_range_rows(
window_frame: &Arc<WindowFrame>,
length: usize,
idx: usize,
) -> Result<Range<usize>> {
let start = match window_frame.start_bound {
// UNBOUNDED PRECEDING
WindowFrameBound::Preceding(ScalarValue::UInt64(None)) => 0,
WindowFrameBound::Preceding(ScalarValue::UInt64(Some(n))) => {
if idx >= n as usize {
idx - n as usize
} else {
0
}
}
WindowFrameBound::CurrentRow => idx,
// UNBOUNDED FOLLOWING
WindowFrameBound::Following(ScalarValue::UInt64(None)) => {
return internal_err!(
"Frame start cannot be UNBOUNDED FOLLOWING '{window_frame:?}'"
)
}
WindowFrameBound::Following(ScalarValue::UInt64(Some(n))) => {
std::cmp::min(idx + n as usize, length)
}
// ERRONEOUS FRAMES
WindowFrameBound::Preceding(_) | WindowFrameBound::Following(_) => {
return internal_err!("Rows should be Uint")
}
};
let end = match window_frame.end_bound {
// UNBOUNDED PRECEDING
WindowFrameBound::Preceding(ScalarValue::UInt64(None)) => {
return internal_err!(
"Frame end cannot be UNBOUNDED PRECEDING '{window_frame:?}'"
)
}
WindowFrameBound::Preceding(ScalarValue::UInt64(Some(n))) => {
if idx >= n as usize {
idx - n as usize + 1
} else {
0
}
}
WindowFrameBound::CurrentRow => idx + 1,
// UNBOUNDED FOLLOWING
WindowFrameBound::Following(ScalarValue::UInt64(None)) => length,
WindowFrameBound::Following(ScalarValue::UInt64(Some(n))) => {
std::cmp::min(idx + n as usize + 1, length)
}
// ERRONEOUS FRAMES
WindowFrameBound::Preceding(_) | WindowFrameBound::Following(_) => {
return internal_err!("Rows should be Uint")
}
};
Ok(Range { start, end })
}
}
/// State for each unique partition determined according to PARTITION BY column(s)
#[derive(Debug)]
pub struct PartitionBatchState {
/// The record batch belonging to current partition
pub record_batch: RecordBatch,
/// The record batch that contains the most recent row at the input.
/// Please note that this batch doesn't necessarily have the same partitioning
/// with `record_batch`. Keeping track of this batch enables us to prune
/// `record_batch` when cardinality of the partition is sparse.
pub most_recent_row: Option<RecordBatch>,
/// Flag indicating whether we have received all data for this partition
pub is_end: bool,
/// Number of rows emitted for each partition
pub n_out_row: usize,
}
impl PartitionBatchState {
pub fn new(schema: SchemaRef) -> Self {
Self {
record_batch: RecordBatch::new_empty(schema),
most_recent_row: None,
is_end: false,
n_out_row: 0,
}
}
pub fn extend(&mut self, batch: &RecordBatch) -> Result<()> {
self.record_batch =
concat_batches(&self.record_batch.schema(), [&self.record_batch, batch])?;
Ok(())
}
pub fn set_most_recent_row(&mut self, batch: RecordBatch) {
// It is enough for the batch to contain only a single row (the rest
// are not necessary).
self.most_recent_row = Some(batch);
}
}
/// This structure encapsulates all the state information we require as we scan
/// ranges of data while processing RANGE frames.
/// Attribute `sort_options` stores the column ordering specified by the ORDER
/// BY clause. This information is used to calculate the range.
#[derive(Debug, Default)]
pub struct WindowFrameStateRange {
sort_options: Vec<SortOptions>,
}
impl WindowFrameStateRange {
/// Create a new object to store the search state.
fn new(sort_options: Vec<SortOptions>) -> Self {
Self { sort_options }
}
/// This function calculates beginning/ending indices for the frame of the current row.
// Argument `last_range` stores the resulting indices from the previous search. Since the indices only
// advance forward, we start from `last_range` subsequently. Thus, the overall
// time complexity of linear search amortizes to O(n) where n denotes the total
// row count.
fn calculate_range(
&mut self,
window_frame: &Arc<WindowFrame>,
last_range: &Range<usize>,
range_columns: &[ArrayRef],
length: usize,
idx: usize,
) -> Result<Range<usize>> {
let start = match window_frame.start_bound {
WindowFrameBound::Preceding(ref n) => {
if n.is_null() {
// UNBOUNDED PRECEDING
0
} else {
self.calculate_index_of_row::<true, true>(
range_columns,
last_range,
idx,
Some(n),
length,
)?
}
}
WindowFrameBound::CurrentRow => self.calculate_index_of_row::<true, true>(
range_columns,
last_range,
idx,
None,
length,
)?,
WindowFrameBound::Following(ref n) => self
.calculate_index_of_row::<true, false>(
range_columns,
last_range,
idx,
Some(n),
length,
)?,
};
let end = match window_frame.end_bound {
WindowFrameBound::Preceding(ref n) => self
.calculate_index_of_row::<false, true>(
range_columns,
last_range,
idx,
Some(n),
length,
)?,
WindowFrameBound::CurrentRow => self.calculate_index_of_row::<false, false>(
range_columns,
last_range,
idx,
None,
length,
)?,
WindowFrameBound::Following(ref n) => {
if n.is_null() {
// UNBOUNDED FOLLOWING
length
} else {
self.calculate_index_of_row::<false, false>(
range_columns,
last_range,
idx,
Some(n),
length,
)?
}
}
};
Ok(Range { start, end })
}
/// This function does the heavy lifting when finding range boundaries. It is meant to be
/// called twice, in succession, to get window frame start and end indices (with `SIDE`
/// supplied as true and false, respectively).
fn calculate_index_of_row<const SIDE: bool, const SEARCH_SIDE: bool>(
&mut self,
range_columns: &[ArrayRef],
last_range: &Range<usize>,
idx: usize,
delta: Option<&ScalarValue>,
length: usize,
) -> Result<usize> {
let current_row_values = get_row_at_idx(range_columns, idx)?;
let end_range = if let Some(delta) = delta {
let is_descending: bool = self
.sort_options
.first()
.ok_or_else(|| {
DataFusionError::Internal(
"Sort options unexpectedly absent in a window frame".to_string(),
)
})?
.descending;
current_row_values
.iter()
.map(|value| {
if value.is_null() {
return Ok(value.clone());
}
if SEARCH_SIDE == is_descending {
// TODO: Handle positive overflows.
value.add(delta)
} else if value.is_unsigned() && value < delta {
// NOTE: This gets a polymorphic zero without having long coercion code for ScalarValue.
// If we decide to implement a "default" construction mechanism for ScalarValue,
// change the following statement to use that.
value.sub(value)
} else {
// TODO: Handle negative overflows.
value.sub(delta)
}
})
.collect::<Result<Vec<ScalarValue>>>()?
} else {
current_row_values
};
let search_start = if SIDE {
last_range.start
} else {
last_range.end
};
let compare_fn = |current: &[ScalarValue], target: &[ScalarValue]| {
let cmp = compare_rows(current, target, &self.sort_options)?;
Ok(if SIDE { cmp.is_lt() } else { cmp.is_le() })
};
search_in_slice(range_columns, &end_range, compare_fn, search_start, length)
}
}
// In GROUPS mode, rows with duplicate sorting values are grouped together.
// Therefore, there must be an ORDER BY clause in the window definition to use GROUPS mode.
// The syntax is as follows:
// GROUPS frame_start [ frame_exclusion ]
// GROUPS BETWEEN frame_start AND frame_end [ frame_exclusion ]
// The optional frame_exclusion specifier is not yet supported.
// The frame_start and frame_end parameters allow us to specify which rows the window
// frame starts and ends with. They accept the following values:
// - UNBOUNDED PRECEDING: Start with the first row of the partition. Possible only in frame_start.
// - offset PRECEDING: When used in frame_start, it refers to the first row of the group
// that comes "offset" groups before the current group (i.e. the group
// containing the current row). When used in frame_end, it refers to the
// last row of the group that comes "offset" groups before the current group.
// - CURRENT ROW: When used in frame_start, it refers to the first row of the group containing
// the current row. When used in frame_end, it refers to the last row of the group
// containing the current row.
// - offset FOLLOWING: When used in frame_start, it refers to the first row of the group
// that comes "offset" groups after the current group (i.e. the group
// containing the current row). When used in frame_end, it refers to the
// last row of the group that comes "offset" groups after the current group.
// - UNBOUNDED FOLLOWING: End with the last row of the partition. Possible only in frame_end.
/// This structure encapsulates all the state information we require as we
/// scan groups of data while processing window frames.
#[derive(Debug, Default)]
pub struct WindowFrameStateGroups {
/// A tuple containing group values and the row index where the group ends.
/// Example: [[1, 1], [1, 1], [2, 1], [2, 1], ...] would correspond to
/// [([1, 1], 2), ([2, 1], 4), ...].
pub group_end_indices: VecDeque<(Vec<ScalarValue>, usize)>,
/// The group index to which the row index belongs.
pub current_group_idx: usize,
}
impl WindowFrameStateGroups {
fn calculate_range(
&mut self,
window_frame: &Arc<WindowFrame>,
range_columns: &[ArrayRef],
length: usize,
idx: usize,
) -> Result<Range<usize>> {
let start = match window_frame.start_bound {
WindowFrameBound::Preceding(ref n) => {
if n.is_null() {
// UNBOUNDED PRECEDING
0
} else {
self.calculate_index_of_row::<true, true>(
range_columns,
idx,
Some(n),
length,
)?
}
}
WindowFrameBound::CurrentRow => self.calculate_index_of_row::<true, true>(
range_columns,
idx,
None,
length,
)?,
WindowFrameBound::Following(ref n) => self
.calculate_index_of_row::<true, false>(
range_columns,
idx,
Some(n),
length,
)?,
};
let end = match window_frame.end_bound {
WindowFrameBound::Preceding(ref n) => self
.calculate_index_of_row::<false, true>(
range_columns,
idx,
Some(n),
length,
)?,
WindowFrameBound::CurrentRow => self.calculate_index_of_row::<false, false>(
range_columns,
idx,
None,
length,
)?,
WindowFrameBound::Following(ref n) => {
if n.is_null() {
// UNBOUNDED FOLLOWING
length
} else {
self.calculate_index_of_row::<false, false>(
range_columns,
idx,
Some(n),
length,
)?
}
}
};
Ok(Range { start, end })
}
/// This function does the heavy lifting when finding range boundaries. It is meant to be
/// called twice, in succession, to get window frame start and end indices (with `SIDE`
/// supplied as true and false, respectively). Generic argument `SEARCH_SIDE` determines
/// the sign of `delta` (where true/false represents negative/positive respectively).
fn calculate_index_of_row<const SIDE: bool, const SEARCH_SIDE: bool>(
&mut self,
range_columns: &[ArrayRef],
idx: usize,
delta: Option<&ScalarValue>,
length: usize,
) -> Result<usize> {
let delta = if let Some(delta) = delta {
if let ScalarValue::UInt64(Some(value)) = delta {
*value as usize
} else {
return internal_err!(
"Unexpectedly got a non-UInt64 value in a GROUPS mode window frame"
);
}
} else {
0
};
let mut group_start = 0;
let last_group = self.group_end_indices.back_mut();
if let Some((group_row, group_end)) = last_group {
if *group_end < length {
let new_group_row = get_row_at_idx(range_columns, *group_end)?;
// If last/current group keys are the same, we extend the last group:
if new_group_row.eq(group_row) {
// Update the end boundary of the group (search right boundary):
*group_end = search_in_slice(
range_columns,
group_row,
check_equality,
*group_end,
length,
)?;
}
}
// Start searching from the last group boundary:
group_start = *group_end;
}
// Advance groups until `idx` is inside a group:
while idx >= group_start {
let group_row = get_row_at_idx(range_columns, group_start)?;
// Find end boundary of the group (search right boundary):
let group_end = search_in_slice(
range_columns,
&group_row,
check_equality,
group_start,
length,
)?;
self.group_end_indices.push_back((group_row, group_end));
group_start = group_end;
}
// Update the group index `idx` belongs to:
while self.current_group_idx < self.group_end_indices.len()
&& idx >= self.group_end_indices[self.current_group_idx].1
{
self.current_group_idx += 1;
}
// Find the group index of the frame boundary:
let group_idx = if SEARCH_SIDE {
if self.current_group_idx > delta {
self.current_group_idx - delta
} else {
0
}
} else {
self.current_group_idx + delta
};
// Extend `group_start_indices` until it includes at least `group_idx`:
while self.group_end_indices.len() <= group_idx && group_start < length {
let group_row = get_row_at_idx(range_columns, group_start)?;
// Find end boundary of the group (search right boundary):
let group_end = search_in_slice(
range_columns,
&group_row,
check_equality,
group_start,
length,
)?;
self.group_end_indices.push_back((group_row, group_end));
group_start = group_end;
}
// Calculate index of the group boundary:
Ok(match (SIDE, SEARCH_SIDE) {
// Window frame start:
(true, _) => {
let group_idx = std::cmp::min(group_idx, self.group_end_indices.len());
if group_idx > 0 {
// Normally, start at the boundary of the previous group.
self.group_end_indices[group_idx - 1].1
} else {
// If previous group is out of the table, start at zero.
0
}
}
// Window frame end, PRECEDING n
(false, true) => {
if self.current_group_idx >= delta {
let group_idx = self.current_group_idx - delta;
self.group_end_indices[group_idx].1
} else {
// Group is out of the table, therefore end at zero.
0
}
}
// Window frame end, FOLLOWING n
(false, false) => {
let group_idx = std::cmp::min(
self.current_group_idx + delta,
self.group_end_indices.len() - 1,
);
self.group_end_indices[group_idx].1
}
})
}
}
fn check_equality(current: &[ScalarValue], target: &[ScalarValue]) -> Result<bool> {
Ok(current == target)
}
#[cfg(test)]
mod tests {
use super::*;
use arrow::array::Float64Array;
fn get_test_data() -> (Vec<ArrayRef>, Vec<SortOptions>) {
let range_columns: Vec<ArrayRef> = vec![Arc::new(Float64Array::from(vec![
5.0, 7.0, 8.0, 8.0, 9., 10., 10., 10., 11.,
]))];
let sort_options = vec![SortOptions {
descending: false,
nulls_first: false,
}];
(range_columns, sort_options)
}
fn assert_expected(
expected_results: Vec<(Range<usize>, usize)>,
window_frame: &Arc<WindowFrame>,
) -> Result<()> {
let mut window_frame_groups = WindowFrameStateGroups::default();
let (range_columns, _) = get_test_data();
let n_row = range_columns[0].len();
for (idx, (expected_range, expected_group_idx)) in
expected_results.into_iter().enumerate()
{
let range = window_frame_groups.calculate_range(
window_frame,
&range_columns,
n_row,
idx,
)?;
assert_eq!(range, expected_range);
assert_eq!(window_frame_groups.current_group_idx, expected_group_idx);
}
Ok(())
}
#[test]
fn test_window_frame_group_boundaries() -> Result<()> {
let window_frame = Arc::new(WindowFrame::new_bounds(
WindowFrameUnits::Groups,
WindowFrameBound::Preceding(ScalarValue::UInt64(Some(1))),
WindowFrameBound::Following(ScalarValue::UInt64(Some(1))),
));
let expected_results = vec![
(Range { start: 0, end: 2 }, 0),
(Range { start: 0, end: 4 }, 1),
(Range { start: 1, end: 5 }, 2),
(Range { start: 1, end: 5 }, 2),
(Range { start: 2, end: 8 }, 3),
(Range { start: 4, end: 9 }, 4),
(Range { start: 4, end: 9 }, 4),
(Range { start: 4, end: 9 }, 4),
(Range { start: 5, end: 9 }, 5),
];
assert_expected(expected_results, &window_frame)
}
#[test]
fn test_window_frame_group_boundaries_both_following() -> Result<()> {
let window_frame = Arc::new(WindowFrame::new_bounds(
WindowFrameUnits::Groups,
WindowFrameBound::Following(ScalarValue::UInt64(Some(1))),
WindowFrameBound::Following(ScalarValue::UInt64(Some(2))),
));
let expected_results = vec![
(Range::<usize> { start: 1, end: 4 }, 0),
(Range::<usize> { start: 2, end: 5 }, 1),
(Range::<usize> { start: 4, end: 8 }, 2),
(Range::<usize> { start: 4, end: 8 }, 2),
(Range::<usize> { start: 5, end: 9 }, 3),
(Range::<usize> { start: 8, end: 9 }, 4),
(Range::<usize> { start: 8, end: 9 }, 4),
(Range::<usize> { start: 8, end: 9 }, 4),
(Range::<usize> { start: 9, end: 9 }, 5),
];
assert_expected(expected_results, &window_frame)
}
#[test]
fn test_window_frame_group_boundaries_both_preceding() -> Result<()> {
let window_frame = Arc::new(WindowFrame::new_bounds(
WindowFrameUnits::Groups,
WindowFrameBound::Preceding(ScalarValue::UInt64(Some(2))),
WindowFrameBound::Preceding(ScalarValue::UInt64(Some(1))),
));
let expected_results = vec![
(Range::<usize> { start: 0, end: 0 }, 0),
(Range::<usize> { start: 0, end: 1 }, 1),
(Range::<usize> { start: 0, end: 2 }, 2),
(Range::<usize> { start: 0, end: 2 }, 2),
(Range::<usize> { start: 1, end: 4 }, 3),
(Range::<usize> { start: 2, end: 5 }, 4),
(Range::<usize> { start: 2, end: 5 }, 4),
(Range::<usize> { start: 2, end: 5 }, 4),
(Range::<usize> { start: 4, end: 8 }, 5),
];
assert_expected(expected_results, &window_frame)
}
}