datafusion_expr/expr_rewriter/order_by.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Rewrite for order by expressions
use crate::expr::Alias;
use crate::expr_rewriter::normalize_col;
use crate::{expr::Sort, Cast, Expr, LogicalPlan, TryCast};
use datafusion_common::tree_node::{Transformed, TransformedResult, TreeNode};
use datafusion_common::{Column, Result};
/// Rewrite sort on aggregate expressions to sort on the column of aggregate output
/// For example, `max(x)` is written to `col("max(x)")`
pub fn rewrite_sort_cols_by_aggs(
sorts: impl IntoIterator<Item = impl Into<Sort>>,
plan: &LogicalPlan,
) -> Result<Vec<Sort>> {
sorts
.into_iter()
.map(|e| {
let sort = e.into();
Ok(Sort::new(
rewrite_sort_col_by_aggs(sort.expr, plan)?,
sort.asc,
sort.nulls_first,
))
})
.collect()
}
fn rewrite_sort_col_by_aggs(expr: Expr, plan: &LogicalPlan) -> Result<Expr> {
let plan_inputs = plan.inputs();
// Joins, and Unions are not yet handled (should have a projection
// on top of them)
if plan_inputs.len() == 1 {
let proj_exprs = plan.expressions();
rewrite_in_terms_of_projection(expr, proj_exprs, plan_inputs[0])
} else {
Ok(expr)
}
}
/// Rewrites a sort expression in terms of the output of the previous [`LogicalPlan`]
///
/// Example:
///
/// Given an input expression such as `col(a) + col(b) + col(c)`
///
/// into `col(a) + col("b + c")`
///
/// Remember that:
/// 1. given a projection with exprs: [a, b + c]
/// 2. t produces an output schema with two columns "a", "b + c"
fn rewrite_in_terms_of_projection(
expr: Expr,
proj_exprs: Vec<Expr>,
input: &LogicalPlan,
) -> Result<Expr> {
// assumption is that each item in exprs, such as "b + c" is
// available as an output column named "b + c"
expr.transform(|expr| {
// search for unnormalized names first such as "c1" (such as aliases)
if let Some(found) = proj_exprs.iter().find(|a| (**a) == expr) {
let (qualifier, field_name) = found.qualified_name();
let col = Expr::Column(Column::new(qualifier, field_name));
return Ok(Transformed::yes(col));
}
// if that doesn't work, try to match the expression as an
// output column -- however first it must be "normalized"
// (e.g. "c1" --> "t.c1") because that normalization is done
// at the input of the aggregate.
let normalized_expr = if let Ok(e) = normalize_col(expr.clone(), input) {
e
} else {
// The expr is not based on Aggregate plan output. Skip it.
return Ok(Transformed::no(expr));
};
// expr is an actual expr like min(t.c2), but we are looking
// for a column with the same "MIN(C2)", so translate there
let name = normalized_expr.schema_name().to_string();
let search_col = Expr::Column(Column {
relation: None,
name,
});
// look for the column named the same as this expr
if let Some(found) = proj_exprs.iter().find(|a| expr_match(&search_col, a)) {
let found = found.clone();
return Ok(Transformed::yes(match normalized_expr {
Expr::Cast(Cast { expr: _, data_type }) => Expr::Cast(Cast {
expr: Box::new(found),
data_type,
}),
Expr::TryCast(TryCast { expr: _, data_type }) => Expr::TryCast(TryCast {
expr: Box::new(found),
data_type,
}),
_ => found,
}));
}
Ok(Transformed::no(expr))
})
.data()
}
/// Does the underlying expr match e?
/// so avg(c) as average will match avgc
fn expr_match(needle: &Expr, expr: &Expr) -> bool {
// check inside aliases
if let Expr::Alias(Alias { expr, .. }) = &expr {
expr.as_ref() == needle
} else {
expr == needle
}
}
#[cfg(test)]
mod test {
use std::ops::Add;
use std::sync::Arc;
use arrow::datatypes::{DataType, Field, Schema};
use crate::{
cast, col, lit, logical_plan::builder::LogicalTableSource, try_cast,
LogicalPlanBuilder,
};
use super::*;
use crate::test::function_stub::avg;
use crate::test::function_stub::min;
#[test]
fn rewrite_sort_cols_by_agg() {
// gby c1, agg: min(c2)
let agg = make_input()
.aggregate(
// gby: c1
vec![col("c1")],
// agg: min(c2)
vec![min(col("c2"))],
)
.unwrap()
.build()
.unwrap();
let cases = vec![
TestCase {
desc: "c1 --> c1",
input: sort(col("c1")),
expected: sort(col("c1")),
},
TestCase {
desc: "c1 + c2 --> c1 + c2",
input: sort(col("c1") + col("c1")),
expected: sort(col("c1") + col("c1")),
},
TestCase {
desc: r#"min(c2) --> "min(c2)"#,
input: sort(min(col("c2"))),
expected: sort(min(col("c2"))),
},
TestCase {
desc: r#"c1 + min(c2) --> "c1 + min(c2)"#,
input: sort(col("c1") + min(col("c2"))),
expected: sort(col("c1") + min(col("c2"))),
},
];
for case in cases {
case.run(&agg)
}
}
#[test]
fn rewrite_sort_cols_by_agg_alias() {
let agg = make_input()
.aggregate(
// gby c1
vec![col("c1")],
// agg: min(c2), avg(c3)
vec![min(col("c2")), avg(col("c3"))],
)
.unwrap()
// projects out an expression "c1" that is different than the column "c1"
.project(vec![
// c1 + 1 as c1,
col("c1").add(lit(1)).alias("c1"),
// min(c2)
min(col("c2")),
// avg("c3") as average
avg(col("c3")).alias("average"),
])
.unwrap()
.build()
.unwrap();
let cases = vec![
TestCase {
desc: "c1 --> c1 -- column *named* c1 that came out of the projection, (not t.c1)",
input: sort(col("c1")),
// should be "c1" not t.c1
expected: sort(col("c1")),
},
TestCase {
desc: r#"min(c2) --> "min(c2)" -- (column *named* "min(t.c2)"!)"#,
input: sort(min(col("c2"))),
expected: sort(col("min(t.c2)")),
},
TestCase {
desc: r#"c1 + min(c2) --> "c1 + min(c2)" -- (column *named* "min(t.c2)"!)"#,
input: sort(col("c1") + min(col("c2"))),
// should be "c1" not t.c1
expected: sort(col("c1") + col("min(t.c2)")),
},
TestCase {
desc: r#"avg(c3) --> "avg(t.c3)" as average (column *named* "avg(t.c3)", aliased)"#,
input: sort(avg(col("c3"))),
expected: sort(col("avg(t.c3)").alias("average")),
},
];
for case in cases {
case.run(&agg)
}
}
#[test]
fn preserve_cast() {
let plan = make_input()
.project(vec![col("c2").alias("c2")])
.unwrap()
.project(vec![col("c2").alias("c2")])
.unwrap()
.build()
.unwrap();
let cases = vec![
TestCase {
desc: "Cast is preserved by rewrite_sort_cols_by_aggs",
input: sort(cast(col("c2"), DataType::Int64)),
expected: sort(cast(col("c2").alias("c2"), DataType::Int64)),
},
TestCase {
desc: "TryCast is preserved by rewrite_sort_cols_by_aggs",
input: sort(try_cast(col("c2"), DataType::Int64)),
expected: sort(try_cast(col("c2").alias("c2"), DataType::Int64)),
},
];
for case in cases {
case.run(&plan)
}
}
struct TestCase {
desc: &'static str,
input: Sort,
expected: Sort,
}
impl TestCase {
/// calls rewrite_sort_cols_by_aggs for expr and compares it to expected_expr
fn run(self, input_plan: &LogicalPlan) {
let Self {
desc,
input,
expected,
} = self;
println!("running: '{desc}'");
let mut exprs =
rewrite_sort_cols_by_aggs(vec![input.clone()], input_plan).unwrap();
assert_eq!(exprs.len(), 1);
let rewritten = exprs.pop().unwrap();
assert_eq!(
rewritten, expected,
"\n\ninput:{input:?}\nrewritten:{rewritten:?}\nexpected:{expected:?}\n"
);
}
}
/// Scan of a table: t(c1 int, c2 varchar, c3 float)
fn make_input() -> LogicalPlanBuilder {
let schema = Arc::new(Schema::new(vec![
Field::new("c1", DataType::Int32, true),
Field::new("c2", DataType::Utf8, true),
Field::new("c3", DataType::Float64, true),
]));
let projection = None;
LogicalPlanBuilder::scan(
"t",
Arc::new(LogicalTableSource::new(schema)),
projection,
)
.unwrap()
}
fn sort(expr: Expr) -> Sort {
let asc = true;
let nulls_first = true;
expr.sort(asc, nulls_first)
}
}