datafusion_expr/
udf.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! [`ScalarUDF`]: Scalar User Defined Functions

use crate::expr::schema_name_from_exprs_comma_seperated_without_space;
use crate::simplify::{ExprSimplifyResult, SimplifyInfo};
use crate::sort_properties::{ExprProperties, SortProperties};
use crate::{
    ColumnarValue, Documentation, Expr, ScalarFunctionImplementation, Signature,
};
use arrow::datatypes::DataType;
use datafusion_common::{not_impl_err, ExprSchema, Result};
use datafusion_expr_common::interval_arithmetic::Interval;
use std::any::Any;
use std::cmp::Ordering;
use std::fmt::Debug;
use std::hash::{DefaultHasher, Hash, Hasher};
use std::sync::Arc;

/// Logical representation of a Scalar User Defined Function.
///
/// A scalar function produces a single row output for each row of input. This
/// struct contains the information DataFusion needs to plan and invoke
/// functions you supply such name, type signature, return type, and actual
/// implementation.
///
/// 1. For simple use cases, use [`create_udf`] (examples in [`simple_udf.rs`]).
///
/// 2. For advanced use cases, use [`ScalarUDFImpl`] which provides full API
///    access (examples in  [`advanced_udf.rs`]).
///
/// See [`Self::call`] to invoke a `ScalarUDF` with arguments.
///
/// # API Note
///
/// This is a separate struct from `ScalarUDFImpl` to maintain backwards
/// compatibility with the older API.
///
/// [`create_udf`]: crate::expr_fn::create_udf
/// [`simple_udf.rs`]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/simple_udf.rs
/// [`advanced_udf.rs`]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/advanced_udf.rs
#[derive(Debug, Clone)]
pub struct ScalarUDF {
    inner: Arc<dyn ScalarUDFImpl>,
}

impl PartialEq for ScalarUDF {
    fn eq(&self, other: &Self) -> bool {
        self.inner.equals(other.inner.as_ref())
    }
}

// Manual implementation based on `ScalarUDFImpl::equals`
impl PartialOrd for ScalarUDF {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        match self.name().partial_cmp(other.name()) {
            Some(Ordering::Equal) => self.signature().partial_cmp(other.signature()),
            cmp => cmp,
        }
    }
}

impl Eq for ScalarUDF {}

impl Hash for ScalarUDF {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.inner.hash_value().hash(state)
    }
}

impl ScalarUDF {
    /// Create a new `ScalarUDF` from a `[ScalarUDFImpl]` trait object
    ///
    /// Note this is the same as using the `From` impl (`ScalarUDF::from`)
    pub fn new_from_impl<F>(fun: F) -> ScalarUDF
    where
        F: ScalarUDFImpl + 'static,
    {
        Self {
            inner: Arc::new(fun),
        }
    }

    /// Return the underlying [`ScalarUDFImpl`] trait object for this function
    pub fn inner(&self) -> &Arc<dyn ScalarUDFImpl> {
        &self.inner
    }

    /// Adds additional names that can be used to invoke this function, in
    /// addition to `name`
    ///
    /// If you implement [`ScalarUDFImpl`] directly you should return aliases directly.
    pub fn with_aliases(self, aliases: impl IntoIterator<Item = &'static str>) -> Self {
        Self::new_from_impl(AliasedScalarUDFImpl::new(Arc::clone(&self.inner), aliases))
    }

    /// Returns a [`Expr`] logical expression to call this UDF with specified
    /// arguments.
    ///
    /// This utility allows easily calling UDFs
    ///
    /// # Example
    /// ```no_run
    /// use datafusion_expr::{col, lit, ScalarUDF};
    /// # fn my_udf() -> ScalarUDF { unimplemented!() }
    /// let my_func: ScalarUDF = my_udf();
    /// // Create an expr for `my_func(a, 12.3)`
    /// let expr = my_func.call(vec![col("a"), lit(12.3)]);
    /// ```
    pub fn call(&self, args: Vec<Expr>) -> Expr {
        Expr::ScalarFunction(crate::expr::ScalarFunction::new_udf(
            Arc::new(self.clone()),
            args,
        ))
    }

    /// Returns this function's name.
    ///
    /// See [`ScalarUDFImpl::name`] for more details.
    pub fn name(&self) -> &str {
        self.inner.name()
    }

    /// Returns this function's display_name.
    ///
    /// See [`ScalarUDFImpl::display_name`] for more details
    pub fn display_name(&self, args: &[Expr]) -> Result<String> {
        self.inner.display_name(args)
    }

    /// Returns this function's schema_name.
    ///
    /// See [`ScalarUDFImpl::schema_name`] for more details
    pub fn schema_name(&self, args: &[Expr]) -> Result<String> {
        self.inner.schema_name(args)
    }

    /// Returns the aliases for this function.
    ///
    /// See [`ScalarUDF::with_aliases`] for more details
    pub fn aliases(&self) -> &[String] {
        self.inner.aliases()
    }

    /// Returns this function's [`Signature`] (what input types are accepted).
    ///
    /// See [`ScalarUDFImpl::signature`] for more details.
    pub fn signature(&self) -> &Signature {
        self.inner.signature()
    }

    /// The datatype this function returns given the input argument input types.
    /// This function is used when the input arguments are [`Expr`]s.
    ///
    ///
    /// See [`ScalarUDFImpl::return_type_from_exprs`] for more details.
    pub fn return_type_from_exprs(
        &self,
        args: &[Expr],
        schema: &dyn ExprSchema,
        arg_types: &[DataType],
    ) -> Result<DataType> {
        // If the implementation provides a return_type_from_exprs, use it
        self.inner.return_type_from_exprs(args, schema, arg_types)
    }

    /// Do the function rewrite
    ///
    /// See [`ScalarUDFImpl::simplify`] for more details.
    pub fn simplify(
        &self,
        args: Vec<Expr>,
        info: &dyn SimplifyInfo,
    ) -> Result<ExprSimplifyResult> {
        self.inner.simplify(args, info)
    }

    /// Invoke the function on `args`, returning the appropriate result.
    ///
    /// See [`ScalarUDFImpl::invoke`] for more details.
    #[deprecated(since = "42.1.0", note = "Use `invoke_batch` instead")]
    pub fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> {
        #[allow(deprecated)]
        self.inner.invoke(args)
    }

    pub fn is_nullable(&self, args: &[Expr], schema: &dyn ExprSchema) -> bool {
        self.inner.is_nullable(args, schema)
    }

    /// Invoke the function with `args` and number of rows, returning the appropriate result.
    ///
    /// See [`ScalarUDFImpl::invoke_batch`] for more details.
    pub fn invoke_batch(
        &self,
        args: &[ColumnarValue],
        number_rows: usize,
    ) -> Result<ColumnarValue> {
        self.inner.invoke_batch(args, number_rows)
    }

    /// Invoke the function without `args` but number of rows, returning the appropriate result.
    ///
    /// See [`ScalarUDFImpl::invoke_no_args`] for more details.
    #[deprecated(since = "42.1.0", note = "Use `invoke_batch` instead")]
    pub fn invoke_no_args(&self, number_rows: usize) -> Result<ColumnarValue> {
        #[allow(deprecated)]
        self.inner.invoke_no_args(number_rows)
    }

    /// Returns a `ScalarFunctionImplementation` that can invoke the function
    /// during execution
    #[deprecated(since = "42.0.0", note = "Use `invoke_batch` instead")]
    pub fn fun(&self) -> ScalarFunctionImplementation {
        let captured = Arc::clone(&self.inner);
        #[allow(deprecated)]
        Arc::new(move |args| captured.invoke(args))
    }

    /// Get the circuits of inner implementation
    pub fn short_circuits(&self) -> bool {
        self.inner.short_circuits()
    }

    /// Computes the output interval for a [`ScalarUDF`], given the input
    /// intervals.
    ///
    /// # Parameters
    ///
    /// * `inputs` are the intervals for the inputs (children) of this function.
    ///
    /// # Example
    ///
    /// If the function is `ABS(a)`, and the input interval is `a: [-3, 2]`,
    /// then the output interval would be `[0, 3]`.
    pub fn evaluate_bounds(&self, inputs: &[&Interval]) -> Result<Interval> {
        self.inner.evaluate_bounds(inputs)
    }

    /// Updates bounds for child expressions, given a known interval for this
    /// function. This is used to propagate constraints down through an expression
    /// tree.
    ///
    /// # Parameters
    ///
    /// * `interval` is the currently known interval for this function.
    /// * `inputs` are the current intervals for the inputs (children) of this function.
    ///
    /// # Returns
    ///
    /// A `Vec` of new intervals for the children, in order.
    ///
    /// If constraint propagation reveals an infeasibility for any child, returns
    /// [`None`]. If none of the children intervals change as a result of
    /// propagation, may return an empty vector instead of cloning `children`.
    /// This is the default (and conservative) return value.
    ///
    /// # Example
    ///
    /// If the function is `ABS(a)`, the current `interval` is `[4, 5]` and the
    /// input `a` is given as `[-7, 3]`, then propagation would return `[-5, 3]`.
    pub fn propagate_constraints(
        &self,
        interval: &Interval,
        inputs: &[&Interval],
    ) -> Result<Option<Vec<Interval>>> {
        self.inner.propagate_constraints(interval, inputs)
    }

    /// Calculates the [`SortProperties`] of this function based on its
    /// children's properties.
    pub fn output_ordering(&self, inputs: &[ExprProperties]) -> Result<SortProperties> {
        self.inner.output_ordering(inputs)
    }

    /// See [`ScalarUDFImpl::coerce_types`] for more details.
    pub fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> {
        self.inner.coerce_types(arg_types)
    }

    /// Returns the documentation for this Scalar UDF.
    ///
    /// Documentation can be accessed programmatically as well as
    /// generating publicly facing documentation.
    pub fn documentation(&self) -> Option<&Documentation> {
        self.inner.documentation()
    }
}

impl<F> From<F> for ScalarUDF
where
    F: ScalarUDFImpl + Send + Sync + 'static,
{
    fn from(fun: F) -> Self {
        Self::new_from_impl(fun)
    }
}

/// Trait for implementing [`ScalarUDF`].
///
/// This trait exposes the full API for implementing user defined functions and
/// can be used to implement any function.
///
/// See [`advanced_udf.rs`] for a full example with complete implementation and
/// [`ScalarUDF`] for other available options.
///
///
/// [`advanced_udf.rs`]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/advanced_udf.rs
/// # Basic Example
/// ```
/// # use std::any::Any;
/// # use std::sync::OnceLock;
/// # use arrow::datatypes::DataType;
/// # use datafusion_common::{DataFusionError, plan_err, Result};
/// # use datafusion_expr::{col, ColumnarValue, Documentation, Signature, Volatility};
/// # use datafusion_expr::{ScalarUDFImpl, ScalarUDF};
/// # use datafusion_expr::scalar_doc_sections::DOC_SECTION_MATH;
///
/// #[derive(Debug)]
/// struct AddOne {
///   signature: Signature,
/// }
///
/// impl AddOne {
///   fn new() -> Self {
///     Self {
///       signature: Signature::uniform(1, vec![DataType::Int32], Volatility::Immutable),
///      }
///   }
/// }
///  
/// static DOCUMENTATION: OnceLock<Documentation> = OnceLock::new();
///
/// fn get_doc() -> &'static Documentation {
///     DOCUMENTATION.get_or_init(|| {
///         Documentation::builder()
///             .with_doc_section(DOC_SECTION_MATH)
///             .with_description("Add one to an int32")
///             .with_syntax_example("add_one(2)")
///             .with_argument("arg1", "The int32 number to add one to")
///             .build()
///             .unwrap()
///     })
/// }
///
/// /// Implement the ScalarUDFImpl trait for AddOne
/// impl ScalarUDFImpl for AddOne {
///    fn as_any(&self) -> &dyn Any { self }
///    fn name(&self) -> &str { "add_one" }
///    fn signature(&self) -> &Signature { &self.signature }
///    fn return_type(&self, args: &[DataType]) -> Result<DataType> {
///      if !matches!(args.get(0), Some(&DataType::Int32)) {
///        return plan_err!("add_one only accepts Int32 arguments");
///      }
///      Ok(DataType::Int32)
///    }
///    // The actual implementation would add one to the argument
///    fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> { unimplemented!() }
///    fn documentation(&self) -> Option<&Documentation> {
///         Some(get_doc())
///     }
/// }
///
/// // Create a new ScalarUDF from the implementation
/// let add_one = ScalarUDF::from(AddOne::new());
///
/// // Call the function `add_one(col)`
/// let expr = add_one.call(vec![col("a")]);
/// ```
pub trait ScalarUDFImpl: Debug + Send + Sync {
    // Note: When adding any methods (with default implementations), remember to add them also
    // into the AliasedScalarUDFImpl below!

    /// Returns this object as an [`Any`] trait object
    fn as_any(&self) -> &dyn Any;

    /// Returns this function's name
    fn name(&self) -> &str;

    /// Returns the user-defined display name of the UDF given the arguments
    fn display_name(&self, args: &[Expr]) -> Result<String> {
        let names: Vec<String> = args.iter().map(ToString::to_string).collect();
        // TODO: join with ", " to standardize the formatting of Vec<Expr>, <https://github.com/apache/datafusion/issues/10364>
        Ok(format!("{}({})", self.name(), names.join(",")))
    }

    /// Returns the name of the column this expression would create
    ///
    /// See [`Expr::schema_name`] for details
    fn schema_name(&self, args: &[Expr]) -> Result<String> {
        Ok(format!(
            "{}({})",
            self.name(),
            schema_name_from_exprs_comma_seperated_without_space(args)?
        ))
    }

    /// Returns the function's [`Signature`] for information about what input
    /// types are accepted and the function's Volatility.
    fn signature(&self) -> &Signature;

    /// What [`DataType`] will be returned by this function, given the types of
    /// the arguments.
    ///
    /// # Notes
    ///
    /// If you provide an implementation for [`Self::return_type_from_exprs`],
    /// DataFusion will not call `return_type` (this function). In this case it
    /// is recommended to return [`DataFusionError::Internal`].
    ///
    /// [`DataFusionError::Internal`]: datafusion_common::DataFusionError::Internal
    fn return_type(&self, arg_types: &[DataType]) -> Result<DataType>;

    /// What [`DataType`] will be returned by this function, given the
    /// arguments?
    ///
    /// Note most UDFs should implement [`Self::return_type`] and not this
    /// function. The output type for most functions only depends on the types
    /// of their inputs (e.g. `sqrt(f32)` is always `f32`).
    ///
    /// By default, this function calls [`Self::return_type`] with the
    /// types of each argument.
    ///
    /// This method can be overridden for functions that return different
    /// *types* based on the *values* of their arguments.
    ///
    /// For example, the following two function calls get the same argument
    /// types (something and a `Utf8` string) but return different types based
    /// on the value of the second argument:
    ///
    /// * `arrow_cast(x, 'Int16')` --> `Int16`
    /// * `arrow_cast(x, 'Float32')` --> `Float32`
    ///
    /// # Notes:
    ///
    /// This function must consistently return the same type for the same
    /// logical input even if the input is simplified (e.g. it must return the same
    /// value for `('foo' | 'bar')` as it does for ('foobar').
    fn return_type_from_exprs(
        &self,
        _args: &[Expr],
        _schema: &dyn ExprSchema,
        arg_types: &[DataType],
    ) -> Result<DataType> {
        self.return_type(arg_types)
    }

    fn is_nullable(&self, _args: &[Expr], _schema: &dyn ExprSchema) -> bool {
        true
    }

    /// Invoke the function on `args`, returning the appropriate result
    ///
    /// The function will be invoked passed with the slice of [`ColumnarValue`]
    /// (either scalar or array).
    ///
    /// If the function does not take any arguments, please use [invoke_no_args]
    /// instead and return [not_impl_err] for this function.
    ///
    ///
    /// # Performance
    ///
    /// For the best performance, the implementations of `invoke` should handle
    /// the common case when one or more of their arguments are constant values
    /// (aka  [`ColumnarValue::Scalar`]).
    ///
    /// [`ColumnarValue::values_to_arrays`] can be used to convert the arguments
    /// to arrays, which will likely be simpler code, but be slower.
    ///
    /// [invoke_no_args]: ScalarUDFImpl::invoke_no_args
    #[deprecated(since = "42.1.0", note = "Use `invoke_batch` instead")]
    fn invoke(&self, _args: &[ColumnarValue]) -> Result<ColumnarValue> {
        not_impl_err!(
            "Function {} does not implement invoke but called",
            self.name()
        )
    }

    /// Invoke the function with `args` and the number of rows,
    /// returning the appropriate result.
    ///
    /// The function will be invoked with the slice of [`ColumnarValue`]
    /// (either scalar or array).
    ///
    /// # Performance
    ///
    /// For the best performance, the implementations should handle the common case
    /// when one or more of their arguments are constant values (aka
    /// [`ColumnarValue::Scalar`]).
    ///
    /// [`ColumnarValue::values_to_arrays`] can be used to convert the arguments
    /// to arrays, which will likely be simpler code, but be slower.
    fn invoke_batch(
        &self,
        args: &[ColumnarValue],
        number_rows: usize,
    ) -> Result<ColumnarValue> {
        match args.is_empty() {
            true =>
            {
                #[allow(deprecated)]
                self.invoke_no_args(number_rows)
            }
            false =>
            {
                #[allow(deprecated)]
                self.invoke(args)
            }
        }
    }

    /// Invoke the function without `args`, instead the number of rows are provided,
    /// returning the appropriate result.
    #[deprecated(since = "42.1.0", note = "Use `invoke_batch` instead")]
    fn invoke_no_args(&self, _number_rows: usize) -> Result<ColumnarValue> {
        not_impl_err!(
            "Function {} does not implement invoke_no_args but called",
            self.name()
        )
    }

    /// Returns any aliases (alternate names) for this function.
    ///
    /// Aliases can be used to invoke the same function using different names.
    /// For example in some databases `now()` and `current_timestamp()` are
    /// aliases for the same function. This behavior can be obtained by
    /// returning `current_timestamp` as an alias for the `now` function.
    ///
    /// Note: `aliases` should only include names other than [`Self::name`].
    /// Defaults to `[]` (no aliases)
    fn aliases(&self) -> &[String] {
        &[]
    }

    /// Optionally apply per-UDF simplification / rewrite rules.
    ///
    /// This can be used to apply function specific simplification rules during
    /// optimization (e.g. `arrow_cast` --> `Expr::Cast`). The default
    /// implementation does nothing.
    ///
    /// Note that DataFusion handles simplifying arguments and  "constant
    /// folding" (replacing a function call with constant arguments such as
    /// `my_add(1,2) --> 3` ). Thus, there is no need to implement such
    /// optimizations manually for specific UDFs.
    ///
    /// # Arguments
    /// * `args`: The arguments of the function
    /// * `info`: The necessary information for simplification
    ///
    /// # Returns
    /// [`ExprSimplifyResult`] indicating the result of the simplification NOTE
    /// if the function cannot be simplified, the arguments *MUST* be returned
    /// unmodified
    fn simplify(
        &self,
        args: Vec<Expr>,
        _info: &dyn SimplifyInfo,
    ) -> Result<ExprSimplifyResult> {
        Ok(ExprSimplifyResult::Original(args))
    }

    /// Returns true if some of this `exprs` subexpressions may not be evaluated
    /// and thus any side effects (like divide by zero) may not be encountered
    /// Setting this to true prevents certain optimizations such as common subexpression elimination
    fn short_circuits(&self) -> bool {
        false
    }

    /// Computes the output interval for a [`ScalarUDFImpl`], given the input
    /// intervals.
    ///
    /// # Parameters
    ///
    /// * `children` are the intervals for the children (inputs) of this function.
    ///
    /// # Example
    ///
    /// If the function is `ABS(a)`, and the input interval is `a: [-3, 2]`,
    /// then the output interval would be `[0, 3]`.
    fn evaluate_bounds(&self, _input: &[&Interval]) -> Result<Interval> {
        // We cannot assume the input datatype is the same of output type.
        Interval::make_unbounded(&DataType::Null)
    }

    /// Updates bounds for child expressions, given a known interval for this
    /// function. This is used to propagate constraints down through an expression
    /// tree.
    ///
    /// # Parameters
    ///
    /// * `interval` is the currently known interval for this function.
    /// * `inputs` are the current intervals for the inputs (children) of this function.
    ///
    /// # Returns
    ///
    /// A `Vec` of new intervals for the children, in order.
    ///
    /// If constraint propagation reveals an infeasibility for any child, returns
    /// [`None`]. If none of the children intervals change as a result of
    /// propagation, may return an empty vector instead of cloning `children`.
    /// This is the default (and conservative) return value.
    ///
    /// # Example
    ///
    /// If the function is `ABS(a)`, the current `interval` is `[4, 5]` and the
    /// input `a` is given as `[-7, 3]`, then propagation would return `[-5, 3]`.
    fn propagate_constraints(
        &self,
        _interval: &Interval,
        _inputs: &[&Interval],
    ) -> Result<Option<Vec<Interval>>> {
        Ok(Some(vec![]))
    }

    /// Calculates the [`SortProperties`] of this function based on its
    /// children's properties.
    fn output_ordering(&self, _inputs: &[ExprProperties]) -> Result<SortProperties> {
        Ok(SortProperties::Unordered)
    }

    /// Coerce arguments of a function call to types that the function can evaluate.
    ///
    /// This function is only called if [`ScalarUDFImpl::signature`] returns [`crate::TypeSignature::UserDefined`]. Most
    /// UDFs should return one of the other variants of `TypeSignature` which handle common
    /// cases
    ///
    /// See the [type coercion module](crate::type_coercion)
    /// documentation for more details on type coercion
    ///
    /// For example, if your function requires a floating point arguments, but the user calls
    /// it like `my_func(1::int)` (i.e. with `1` as an integer), coerce_types can return `[DataType::Float64]`
    /// to ensure the argument is converted to `1::double`
    ///
    /// # Parameters
    /// * `arg_types`: The argument types of the arguments  this function with
    ///
    /// # Return value
    /// A Vec the same length as `arg_types`. DataFusion will `CAST` the function call
    /// arguments to these specific types.
    fn coerce_types(&self, _arg_types: &[DataType]) -> Result<Vec<DataType>> {
        not_impl_err!("Function {} does not implement coerce_types", self.name())
    }

    /// Return true if this scalar UDF is equal to the other.
    ///
    /// Allows customizing the equality of scalar UDFs.
    /// Must be consistent with [`Self::hash_value`] and follow the same rules as [`Eq`]:
    ///
    /// - reflexive: `a.equals(a)`;
    /// - symmetric: `a.equals(b)` implies `b.equals(a)`;
    /// - transitive: `a.equals(b)` and `b.equals(c)` implies `a.equals(c)`.
    ///
    /// By default, compares [`Self::name`] and [`Self::signature`].
    fn equals(&self, other: &dyn ScalarUDFImpl) -> bool {
        self.name() == other.name() && self.signature() == other.signature()
    }

    /// Returns a hash value for this scalar UDF.
    ///
    /// Allows customizing the hash code of scalar UDFs. Similarly to [`Hash`] and [`Eq`],
    /// if [`Self::equals`] returns true for two UDFs, their `hash_value`s must be the same.
    ///
    /// By default, hashes [`Self::name`] and [`Self::signature`].
    fn hash_value(&self) -> u64 {
        let hasher = &mut DefaultHasher::new();
        self.name().hash(hasher);
        self.signature().hash(hasher);
        hasher.finish()
    }

    /// Returns the documentation for this Scalar UDF.
    ///
    /// Documentation can be accessed programmatically as well as
    /// generating publicly facing documentation.
    fn documentation(&self) -> Option<&Documentation> {
        None
    }
}

/// ScalarUDF that adds an alias to the underlying function. It is better to
/// implement [`ScalarUDFImpl`], which supports aliases, directly if possible.
#[derive(Debug)]
struct AliasedScalarUDFImpl {
    inner: Arc<dyn ScalarUDFImpl>,
    aliases: Vec<String>,
}

impl AliasedScalarUDFImpl {
    pub fn new(
        inner: Arc<dyn ScalarUDFImpl>,
        new_aliases: impl IntoIterator<Item = &'static str>,
    ) -> Self {
        let mut aliases = inner.aliases().to_vec();
        aliases.extend(new_aliases.into_iter().map(|s| s.to_string()));
        Self { inner, aliases }
    }
}

impl ScalarUDFImpl for AliasedScalarUDFImpl {
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn name(&self) -> &str {
        self.inner.name()
    }

    fn display_name(&self, args: &[Expr]) -> Result<String> {
        self.inner.display_name(args)
    }

    fn schema_name(&self, args: &[Expr]) -> Result<String> {
        self.inner.schema_name(args)
    }

    fn signature(&self) -> &Signature {
        self.inner.signature()
    }

    fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
        self.inner.return_type(arg_types)
    }

    fn aliases(&self) -> &[String] {
        &self.aliases
    }

    fn return_type_from_exprs(
        &self,
        args: &[Expr],
        schema: &dyn ExprSchema,
        arg_types: &[DataType],
    ) -> Result<DataType> {
        self.inner.return_type_from_exprs(args, schema, arg_types)
    }

    fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> {
        #[allow(deprecated)]
        self.inner.invoke(args)
    }

    fn invoke_no_args(&self, number_rows: usize) -> Result<ColumnarValue> {
        #[allow(deprecated)]
        self.inner.invoke_no_args(number_rows)
    }

    fn simplify(
        &self,
        args: Vec<Expr>,
        info: &dyn SimplifyInfo,
    ) -> Result<ExprSimplifyResult> {
        self.inner.simplify(args, info)
    }

    fn short_circuits(&self) -> bool {
        self.inner.short_circuits()
    }

    fn evaluate_bounds(&self, input: &[&Interval]) -> Result<Interval> {
        self.inner.evaluate_bounds(input)
    }

    fn propagate_constraints(
        &self,
        interval: &Interval,
        inputs: &[&Interval],
    ) -> Result<Option<Vec<Interval>>> {
        self.inner.propagate_constraints(interval, inputs)
    }

    fn output_ordering(&self, inputs: &[ExprProperties]) -> Result<SortProperties> {
        self.inner.output_ordering(inputs)
    }

    fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> {
        self.inner.coerce_types(arg_types)
    }

    fn equals(&self, other: &dyn ScalarUDFImpl) -> bool {
        if let Some(other) = other.as_any().downcast_ref::<AliasedScalarUDFImpl>() {
            self.inner.equals(other.inner.as_ref()) && self.aliases == other.aliases
        } else {
            false
        }
    }

    fn hash_value(&self) -> u64 {
        let hasher = &mut DefaultHasher::new();
        self.inner.hash_value().hash(hasher);
        self.aliases.hash(hasher);
        hasher.finish()
    }

    fn documentation(&self) -> Option<&Documentation> {
        self.inner.documentation()
    }
}

// Scalar UDF doc sections for use in public documentation
pub mod scalar_doc_sections {
    use crate::DocSection;

    pub fn doc_sections() -> Vec<DocSection> {
        vec![
            DOC_SECTION_MATH,
            DOC_SECTION_CONDITIONAL,
            DOC_SECTION_STRING,
            DOC_SECTION_BINARY_STRING,
            DOC_SECTION_REGEX,
            DOC_SECTION_DATETIME,
            DOC_SECTION_ARRAY,
            DOC_SECTION_STRUCT,
            DOC_SECTION_MAP,
            DOC_SECTION_HASHING,
            DOC_SECTION_OTHER,
        ]
    }

    pub const DOC_SECTION_MATH: DocSection = DocSection {
        include: true,
        label: "Math Functions",
        description: None,
    };

    pub const DOC_SECTION_CONDITIONAL: DocSection = DocSection {
        include: true,
        label: "Conditional Functions",
        description: None,
    };

    pub const DOC_SECTION_STRING: DocSection = DocSection {
        include: true,
        label: "String Functions",
        description: None,
    };

    pub const DOC_SECTION_BINARY_STRING: DocSection = DocSection {
        include: true,
        label: "Binary String Functions",
        description: None,
    };

    pub const DOC_SECTION_REGEX: DocSection = DocSection {
        include: true,
        label: "Regular Expression Functions",
        description: Some(
            r#"Apache DataFusion uses a [PCRE-like](https://en.wikibooks.org/wiki/Regular_Expressions/Perl-Compatible_Regular_Expressions)
regular expression [syntax](https://docs.rs/regex/latest/regex/#syntax)
(minus support for several features including look-around and backreferences).
The following regular expression functions are supported:"#,
        ),
    };

    pub const DOC_SECTION_DATETIME: DocSection = DocSection {
        include: true,
        label: "Time and Date Functions",
        description: None,
    };

    pub const DOC_SECTION_ARRAY: DocSection = DocSection {
        include: true,
        label: "Array Functions",
        description: None,
    };

    pub const DOC_SECTION_STRUCT: DocSection = DocSection {
        include: true,
        label: "Struct Functions",
        description: None,
    };

    pub const DOC_SECTION_MAP: DocSection = DocSection {
        include: true,
        label: "Map Functions",
        description: None,
    };

    pub const DOC_SECTION_HASHING: DocSection = DocSection {
        include: true,
        label: "Hashing Functions",
        description: None,
    };

    pub const DOC_SECTION_OTHER: DocSection = DocSection {
        include: true,
        label: "Other Functions",
        description: None,
    };
}