datafusion_functions_aggregate_common/aggregate/
groups_accumulator.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Utilities for implementing GroupsAccumulator
//! Adapter that makes [`GroupsAccumulator`] out of [`Accumulator`]

pub mod accumulate;
pub mod bool_op;
pub mod nulls;
pub mod prim_op;

use std::mem::{size_of, size_of_val};

use arrow::array::new_empty_array;
use arrow::{
    array::{ArrayRef, AsArray, BooleanArray, PrimitiveArray},
    compute,
    compute::take_arrays,
    datatypes::UInt32Type,
};
use datafusion_common::{arrow_datafusion_err, DataFusionError, Result, ScalarValue};
use datafusion_expr_common::accumulator::Accumulator;
use datafusion_expr_common::groups_accumulator::{EmitTo, GroupsAccumulator};

/// An adapter that implements [`GroupsAccumulator`] for any [`Accumulator`]
///
/// While [`Accumulator`] are simpler to implement and can support
/// more general calculations (like retractable window functions),
/// they are not as fast as a specialized `GroupsAccumulator`. This
/// interface bridges the gap so the group by operator only operates
/// in terms of [`Accumulator`].
///
/// Internally, this adapter creates a new [`Accumulator`] for each group which
/// stores the state for that group. This both requires an allocation for each
/// Accumulator, internal indices, as well as whatever internal allocations the
/// Accumulator itself requires.
///
/// For example, a `MinAccumulator` that computes the minimum string value with
/// a [`ScalarValue::Utf8`]. That will require at least two allocations per group
/// (one for the `MinAccumulator` and one for the `ScalarValue::Utf8`).
///
/// ```text
///                       ┌─────────────────────────────────┐
///                       │MinAccumulator {                 │
///                ┌─────▶│ min: ScalarValue::Utf8("A")     │───────┐
///                │      │}                                │       │
///                │      └─────────────────────────────────┘       └───────▶   "A"
///    ┌─────┐     │      ┌─────────────────────────────────┐
///    │  0  │─────┘      │MinAccumulator {                 │
///    ├─────┤     ┌─────▶│ min: ScalarValue::Utf8("Z")     │───────────────▶   "Z"
///    │  1  │─────┘      │}                                │
///    └─────┘            └─────────────────────────────────┘                   ...
///      ...                 ...
///    ┌─────┐            ┌────────────────────────────────┐
///    │ N-2 │            │MinAccumulator {                │
///    ├─────┤            │  min: ScalarValue::Utf8("A")   │────────────────▶   "A"
///    │ N-1 │─────┐      │}                               │
///    └─────┘     │      └────────────────────────────────┘
///                │      ┌────────────────────────────────┐        ┌───────▶   "Q"
///                │      │MinAccumulator {                │        │
///                └─────▶│  min: ScalarValue::Utf8("Q")   │────────┘
///                       │}                               │
///                       └────────────────────────────────┘
///
///
///  Logical group         Current Min/Max value for that group stored
///     number             as a ScalarValue which points to an
///                        indivdually allocated String
///
///```
///
/// # Optimizations
///
/// The adapter minimizes the number of calls to [`Accumulator::update_batch`]
/// by first collecting the input rows for each group into a contiguous array
/// using [`compute::take`]
///
pub struct GroupsAccumulatorAdapter {
    factory: Box<dyn Fn() -> Result<Box<dyn Accumulator>> + Send>,

    /// state for each group, stored in group_index order
    states: Vec<AccumulatorState>,

    /// Current memory usage, in bytes.
    ///
    /// Note this is incrementally updated with deltas to avoid the
    /// call to size() being a bottleneck. We saw size() being a
    /// bottleneck in earlier implementations when there were many
    /// distinct groups.
    allocation_bytes: usize,
}

struct AccumulatorState {
    /// [`Accumulator`] that stores the per-group state
    accumulator: Box<dyn Accumulator>,

    /// scratch space: indexes in the input array that will be fed to
    /// this accumulator. Stores indexes as `u32` to match the arrow
    /// `take` kernel input.
    indices: Vec<u32>,
}

impl AccumulatorState {
    fn new(accumulator: Box<dyn Accumulator>) -> Self {
        Self {
            accumulator,
            indices: vec![],
        }
    }

    /// Returns the amount of memory taken by this structure and its accumulator
    fn size(&self) -> usize {
        self.accumulator.size() + size_of_val(self) + self.indices.allocated_size()
    }
}

impl GroupsAccumulatorAdapter {
    /// Create a new adapter that will create a new [`Accumulator`]
    /// for each group, using the specified factory function
    pub fn new<F>(factory: F) -> Self
    where
        F: Fn() -> Result<Box<dyn Accumulator>> + Send + 'static,
    {
        Self {
            factory: Box::new(factory),
            states: vec![],
            allocation_bytes: 0,
        }
    }

    /// Ensure that self.accumulators has total_num_groups
    fn make_accumulators_if_needed(&mut self, total_num_groups: usize) -> Result<()> {
        // can't shrink
        assert!(total_num_groups >= self.states.len());
        let vec_size_pre = self.states.allocated_size();

        // instantiate new accumulators
        let new_accumulators = total_num_groups - self.states.len();
        for _ in 0..new_accumulators {
            let accumulator = (self.factory)()?;
            let state = AccumulatorState::new(accumulator);
            self.add_allocation(state.size());
            self.states.push(state);
        }

        self.adjust_allocation(vec_size_pre, self.states.allocated_size());
        Ok(())
    }

    /// invokes f(accumulator, values) for each group that has values
    /// in group_indices.
    ///
    /// This function first reorders the input and filter so that
    /// values for each group_index are contiguous and then invokes f
    /// on the contiguous ranges, to minimize per-row overhead
    ///
    /// ```text
    /// ┌─────────┐   ┌─────────┐   ┌ ─ ─ ─ ─ ┐                       ┌─────────┐   ┌ ─ ─ ─ ─ ┐
    /// │ ┌─────┐ │   │ ┌─────┐ │     ┌─────┐              ┏━━━━━┓    │ ┌─────┐ │     ┌─────┐
    /// │ │  2  │ │   │ │ 200 │ │   │ │  t  │ │            ┃  0  ┃    │ │ 200 │ │   │ │  t  │ │
    /// │ ├─────┤ │   │ ├─────┤ │     ├─────┤              ┣━━━━━┫    │ ├─────┤ │     ├─────┤
    /// │ │  2  │ │   │ │ 100 │ │   │ │  f  │ │            ┃  0  ┃    │ │ 300 │ │   │ │  t  │ │
    /// │ ├─────┤ │   │ ├─────┤ │     ├─────┤              ┣━━━━━┫    │ ├─────┤ │     ├─────┤
    /// │ │  0  │ │   │ │ 200 │ │   │ │  t  │ │            ┃  1  ┃    │ │ 200 │ │   │ │NULL │ │
    /// │ ├─────┤ │   │ ├─────┤ │     ├─────┤   ────────▶  ┣━━━━━┫    │ ├─────┤ │     ├─────┤
    /// │ │  1  │ │   │ │ 200 │ │   │ │NULL │ │            ┃  2  ┃    │ │ 200 │ │   │ │  t  │ │
    /// │ ├─────┤ │   │ ├─────┤ │     ├─────┤              ┣━━━━━┫    │ ├─────┤ │     ├─────┤
    /// │ │  0  │ │   │ │ 300 │ │   │ │  t  │ │            ┃  2  ┃    │ │ 100 │ │   │ │  f  │ │
    /// │ └─────┘ │   │ └─────┘ │     └─────┘              ┗━━━━━┛    │ └─────┘ │     └─────┘
    /// └─────────┘   └─────────┘   └ ─ ─ ─ ─ ┘                       └─────────┘   └ ─ ─ ─ ─ ┘
    ///
    /// logical group   values      opt_filter           logical group  values       opt_filter
    ///
    /// ```
    fn invoke_per_accumulator<F>(
        &mut self,
        values: &[ArrayRef],
        group_indices: &[usize],
        opt_filter: Option<&BooleanArray>,
        total_num_groups: usize,
        f: F,
    ) -> Result<()>
    where
        F: Fn(&mut dyn Accumulator, &[ArrayRef]) -> Result<()>,
    {
        self.make_accumulators_if_needed(total_num_groups)?;

        assert_eq!(values[0].len(), group_indices.len());

        // figure out which input rows correspond to which groups.
        // Note that self.state.indices starts empty for all groups
        // (it is cleared out below)
        for (idx, group_index) in group_indices.iter().enumerate() {
            self.states[*group_index].indices.push(idx as u32);
        }

        // groups_with_rows holds a list of group indexes that have
        // any rows that need to be accumulated, stored in order of
        // group_index

        let mut groups_with_rows = vec![];

        // batch_indices holds indices into values, each group is contiguous
        let mut batch_indices = vec![];

        // offsets[i] is index into batch_indices where the rows for
        // group_index i starts
        let mut offsets = vec![0];

        let mut offset_so_far = 0;
        for (group_index, state) in self.states.iter_mut().enumerate() {
            let indices = &state.indices;
            if indices.is_empty() {
                continue;
            }

            groups_with_rows.push(group_index);
            batch_indices.extend_from_slice(indices);
            offset_so_far += indices.len();
            offsets.push(offset_so_far);
        }
        let batch_indices = batch_indices.into();

        // reorder the values and opt_filter by batch_indices so that
        // all values for each group are contiguous, then invoke the
        // accumulator once per group with values
        let values = take_arrays(values, &batch_indices, None)?;
        let opt_filter = get_filter_at_indices(opt_filter, &batch_indices)?;

        // invoke each accumulator with the appropriate rows, first
        // pulling the input arguments for this group into their own
        // RecordBatch(es)
        let iter = groups_with_rows.iter().zip(offsets.windows(2));

        let mut sizes_pre = 0;
        let mut sizes_post = 0;
        for (&group_idx, offsets) in iter {
            let state = &mut self.states[group_idx];
            sizes_pre += state.size();

            let values_to_accumulate = slice_and_maybe_filter(
                &values,
                opt_filter.as_ref().map(|f| f.as_boolean()),
                offsets,
            )?;
            f(state.accumulator.as_mut(), &values_to_accumulate)?;

            // clear out the state so they are empty for next
            // iteration
            state.indices.clear();
            sizes_post += state.size();
        }

        self.adjust_allocation(sizes_pre, sizes_post);
        Ok(())
    }

    /// Increment the allocation by `n`
    ///
    /// See [`Self::allocation_bytes`] for rationale.
    fn add_allocation(&mut self, size: usize) {
        self.allocation_bytes += size;
    }

    /// Decrease the allocation by `n`
    ///
    /// See [`Self::allocation_bytes`] for rationale.
    fn free_allocation(&mut self, size: usize) {
        // use saturating sub to avoid errors if the accumulators
        // report erronious sizes
        self.allocation_bytes = self.allocation_bytes.saturating_sub(size)
    }

    /// Adjusts the allocation for something that started with
    /// start_size and now has new_size avoiding overflow
    ///
    /// See [`Self::allocation_bytes`] for rationale.
    fn adjust_allocation(&mut self, old_size: usize, new_size: usize) {
        if new_size > old_size {
            self.add_allocation(new_size - old_size)
        } else {
            self.free_allocation(old_size - new_size)
        }
    }
}

impl GroupsAccumulator for GroupsAccumulatorAdapter {
    fn update_batch(
        &mut self,
        values: &[ArrayRef],
        group_indices: &[usize],
        opt_filter: Option<&BooleanArray>,
        total_num_groups: usize,
    ) -> Result<()> {
        self.invoke_per_accumulator(
            values,
            group_indices,
            opt_filter,
            total_num_groups,
            |accumulator, values_to_accumulate| {
                accumulator.update_batch(values_to_accumulate)
            },
        )?;
        Ok(())
    }

    fn evaluate(&mut self, emit_to: EmitTo) -> Result<ArrayRef> {
        let vec_size_pre = self.states.allocated_size();

        let states = emit_to.take_needed(&mut self.states);

        let results: Vec<ScalarValue> = states
            .into_iter()
            .map(|mut state| {
                self.free_allocation(state.size());
                state.accumulator.evaluate()
            })
            .collect::<Result<_>>()?;

        let result = ScalarValue::iter_to_array(results);

        self.adjust_allocation(vec_size_pre, self.states.allocated_size());

        result
    }

    // filtered_null_mask(opt_filter, &values);
    fn state(&mut self, emit_to: EmitTo) -> Result<Vec<ArrayRef>> {
        let vec_size_pre = self.states.allocated_size();
        let states = emit_to.take_needed(&mut self.states);

        // each accumulator produces a potential vector of values
        // which we need to form into columns
        let mut results: Vec<Vec<ScalarValue>> = vec![];

        for mut state in states {
            self.free_allocation(state.size());
            let accumulator_state = state.accumulator.state()?;
            results.resize_with(accumulator_state.len(), Vec::new);
            for (idx, state_val) in accumulator_state.into_iter().enumerate() {
                results[idx].push(state_val);
            }
        }

        // create an array for each intermediate column
        let arrays = results
            .into_iter()
            .map(ScalarValue::iter_to_array)
            .collect::<Result<Vec<_>>>()?;

        // double check each array has the same length (aka the
        // accumulator was implemented correctly
        if let Some(first_col) = arrays.first() {
            for arr in &arrays {
                assert_eq!(arr.len(), first_col.len())
            }
        }
        self.adjust_allocation(vec_size_pre, self.states.allocated_size());

        Ok(arrays)
    }

    fn merge_batch(
        &mut self,
        values: &[ArrayRef],
        group_indices: &[usize],
        opt_filter: Option<&BooleanArray>,
        total_num_groups: usize,
    ) -> Result<()> {
        self.invoke_per_accumulator(
            values,
            group_indices,
            opt_filter,
            total_num_groups,
            |accumulator, values_to_accumulate| {
                accumulator.merge_batch(values_to_accumulate)?;
                Ok(())
            },
        )?;
        Ok(())
    }

    fn size(&self) -> usize {
        self.allocation_bytes
    }

    fn convert_to_state(
        &self,
        values: &[ArrayRef],
        opt_filter: Option<&BooleanArray>,
    ) -> Result<Vec<ArrayRef>> {
        let num_rows = values[0].len();

        // If there are no rows, return empty arrays
        if num_rows == 0 {
            // create empty accumulator to get the state types
            let empty_state = (self.factory)()?.state()?;
            let empty_arrays = empty_state
                .into_iter()
                .map(|state_val| new_empty_array(&state_val.data_type()))
                .collect::<Vec<_>>();

            return Ok(empty_arrays);
        }

        // Each row has its respective group
        let mut results = vec![];
        for row_idx in 0..num_rows {
            // Create the empty accumulator for converting
            let mut converted_accumulator = (self.factory)()?;

            // Convert row to states
            let values_to_accumulate =
                slice_and_maybe_filter(values, opt_filter, &[row_idx, row_idx + 1])?;
            converted_accumulator.update_batch(&values_to_accumulate)?;
            let states = converted_accumulator.state()?;

            // Resize results to have enough columns according to the converted states
            results.resize_with(states.len(), || Vec::with_capacity(num_rows));

            // Add the states to results
            for (idx, state_val) in states.into_iter().enumerate() {
                results[idx].push(state_val);
            }
        }

        let arrays = results
            .into_iter()
            .map(ScalarValue::iter_to_array)
            .collect::<Result<Vec<_>>>()?;

        Ok(arrays)
    }

    fn supports_convert_to_state(&self) -> bool {
        true
    }
}

/// Extension trait for [`Vec`] to account for allocations.
pub trait VecAllocExt {
    /// Item type.
    type T;
    /// Return the amount of memory allocated by this Vec (not
    /// recursively counting any heap allocations contained within the
    /// structure). Does not include the size of `self`
    fn allocated_size(&self) -> usize;
}

impl<T> VecAllocExt for Vec<T> {
    type T = T;
    fn allocated_size(&self) -> usize {
        size_of::<T>() * self.capacity()
    }
}

fn get_filter_at_indices(
    opt_filter: Option<&BooleanArray>,
    indices: &PrimitiveArray<UInt32Type>,
) -> Result<Option<ArrayRef>> {
    opt_filter
        .map(|filter| {
            compute::take(
                &filter, indices, None, // None: no index check
            )
        })
        .transpose()
        .map_err(|e| arrow_datafusion_err!(e))
}

// Copied from physical-plan
pub(crate) fn slice_and_maybe_filter(
    aggr_array: &[ArrayRef],
    filter_opt: Option<&BooleanArray>,
    offsets: &[usize],
) -> Result<Vec<ArrayRef>> {
    let (offset, length) = (offsets[0], offsets[1] - offsets[0]);
    let sliced_arrays: Vec<ArrayRef> = aggr_array
        .iter()
        .map(|array| array.slice(offset, length))
        .collect();

    if let Some(f) = filter_opt {
        let filter = f.slice(offset, length);

        sliced_arrays
            .iter()
            .map(|array| {
                compute::filter(&array, &filter).map_err(|e| arrow_datafusion_err!(e))
            })
            .collect()
    } else {
        Ok(sliced_arrays)
    }
}