datafusion_functions_aggregate_common/aggregate/groups_accumulator.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Utilities for implementing GroupsAccumulator
//! Adapter that makes [`GroupsAccumulator`] out of [`Accumulator`]
pub mod accumulate;
pub mod bool_op;
pub mod nulls;
pub mod prim_op;
use std::mem::{size_of, size_of_val};
use arrow::array::new_empty_array;
use arrow::{
array::{ArrayRef, AsArray, BooleanArray, PrimitiveArray},
compute,
compute::take_arrays,
datatypes::UInt32Type,
};
use datafusion_common::{arrow_datafusion_err, DataFusionError, Result, ScalarValue};
use datafusion_expr_common::accumulator::Accumulator;
use datafusion_expr_common::groups_accumulator::{EmitTo, GroupsAccumulator};
/// An adapter that implements [`GroupsAccumulator`] for any [`Accumulator`]
///
/// While [`Accumulator`] are simpler to implement and can support
/// more general calculations (like retractable window functions),
/// they are not as fast as a specialized `GroupsAccumulator`. This
/// interface bridges the gap so the group by operator only operates
/// in terms of [`Accumulator`].
///
/// Internally, this adapter creates a new [`Accumulator`] for each group which
/// stores the state for that group. This both requires an allocation for each
/// Accumulator, internal indices, as well as whatever internal allocations the
/// Accumulator itself requires.
///
/// For example, a `MinAccumulator` that computes the minimum string value with
/// a [`ScalarValue::Utf8`]. That will require at least two allocations per group
/// (one for the `MinAccumulator` and one for the `ScalarValue::Utf8`).
///
/// ```text
/// ┌─────────────────────────────────┐
/// │MinAccumulator { │
/// ┌─────▶│ min: ScalarValue::Utf8("A") │───────┐
/// │ │} │ │
/// │ └─────────────────────────────────┘ └───────▶ "A"
/// ┌─────┐ │ ┌─────────────────────────────────┐
/// │ 0 │─────┘ │MinAccumulator { │
/// ├─────┤ ┌─────▶│ min: ScalarValue::Utf8("Z") │───────────────▶ "Z"
/// │ 1 │─────┘ │} │
/// └─────┘ └─────────────────────────────────┘ ...
/// ... ...
/// ┌─────┐ ┌────────────────────────────────┐
/// │ N-2 │ │MinAccumulator { │
/// ├─────┤ │ min: ScalarValue::Utf8("A") │────────────────▶ "A"
/// │ N-1 │─────┐ │} │
/// └─────┘ │ └────────────────────────────────┘
/// │ ┌────────────────────────────────┐ ┌───────▶ "Q"
/// │ │MinAccumulator { │ │
/// └─────▶│ min: ScalarValue::Utf8("Q") │────────┘
/// │} │
/// └────────────────────────────────┘
///
///
/// Logical group Current Min/Max value for that group stored
/// number as a ScalarValue which points to an
/// indivdually allocated String
///
///```
///
/// # Optimizations
///
/// The adapter minimizes the number of calls to [`Accumulator::update_batch`]
/// by first collecting the input rows for each group into a contiguous array
/// using [`compute::take`]
///
pub struct GroupsAccumulatorAdapter {
factory: Box<dyn Fn() -> Result<Box<dyn Accumulator>> + Send>,
/// state for each group, stored in group_index order
states: Vec<AccumulatorState>,
/// Current memory usage, in bytes.
///
/// Note this is incrementally updated with deltas to avoid the
/// call to size() being a bottleneck. We saw size() being a
/// bottleneck in earlier implementations when there were many
/// distinct groups.
allocation_bytes: usize,
}
struct AccumulatorState {
/// [`Accumulator`] that stores the per-group state
accumulator: Box<dyn Accumulator>,
/// scratch space: indexes in the input array that will be fed to
/// this accumulator. Stores indexes as `u32` to match the arrow
/// `take` kernel input.
indices: Vec<u32>,
}
impl AccumulatorState {
fn new(accumulator: Box<dyn Accumulator>) -> Self {
Self {
accumulator,
indices: vec![],
}
}
/// Returns the amount of memory taken by this structure and its accumulator
fn size(&self) -> usize {
self.accumulator.size() + size_of_val(self) + self.indices.allocated_size()
}
}
impl GroupsAccumulatorAdapter {
/// Create a new adapter that will create a new [`Accumulator`]
/// for each group, using the specified factory function
pub fn new<F>(factory: F) -> Self
where
F: Fn() -> Result<Box<dyn Accumulator>> + Send + 'static,
{
Self {
factory: Box::new(factory),
states: vec![],
allocation_bytes: 0,
}
}
/// Ensure that self.accumulators has total_num_groups
fn make_accumulators_if_needed(&mut self, total_num_groups: usize) -> Result<()> {
// can't shrink
assert!(total_num_groups >= self.states.len());
let vec_size_pre = self.states.allocated_size();
// instantiate new accumulators
let new_accumulators = total_num_groups - self.states.len();
for _ in 0..new_accumulators {
let accumulator = (self.factory)()?;
let state = AccumulatorState::new(accumulator);
self.add_allocation(state.size());
self.states.push(state);
}
self.adjust_allocation(vec_size_pre, self.states.allocated_size());
Ok(())
}
/// invokes f(accumulator, values) for each group that has values
/// in group_indices.
///
/// This function first reorders the input and filter so that
/// values for each group_index are contiguous and then invokes f
/// on the contiguous ranges, to minimize per-row overhead
///
/// ```text
/// ┌─────────┐ ┌─────────┐ ┌ ─ ─ ─ ─ ┐ ┌─────────┐ ┌ ─ ─ ─ ─ ┐
/// │ ┌─────┐ │ │ ┌─────┐ │ ┌─────┐ ┏━━━━━┓ │ ┌─────┐ │ ┌─────┐
/// │ │ 2 │ │ │ │ 200 │ │ │ │ t │ │ ┃ 0 ┃ │ │ 200 │ │ │ │ t │ │
/// │ ├─────┤ │ │ ├─────┤ │ ├─────┤ ┣━━━━━┫ │ ├─────┤ │ ├─────┤
/// │ │ 2 │ │ │ │ 100 │ │ │ │ f │ │ ┃ 0 ┃ │ │ 300 │ │ │ │ t │ │
/// │ ├─────┤ │ │ ├─────┤ │ ├─────┤ ┣━━━━━┫ │ ├─────┤ │ ├─────┤
/// │ │ 0 │ │ │ │ 200 │ │ │ │ t │ │ ┃ 1 ┃ │ │ 200 │ │ │ │NULL │ │
/// │ ├─────┤ │ │ ├─────┤ │ ├─────┤ ────────▶ ┣━━━━━┫ │ ├─────┤ │ ├─────┤
/// │ │ 1 │ │ │ │ 200 │ │ │ │NULL │ │ ┃ 2 ┃ │ │ 200 │ │ │ │ t │ │
/// │ ├─────┤ │ │ ├─────┤ │ ├─────┤ ┣━━━━━┫ │ ├─────┤ │ ├─────┤
/// │ │ 0 │ │ │ │ 300 │ │ │ │ t │ │ ┃ 2 ┃ │ │ 100 │ │ │ │ f │ │
/// │ └─────┘ │ │ └─────┘ │ └─────┘ ┗━━━━━┛ │ └─────┘ │ └─────┘
/// └─────────┘ └─────────┘ └ ─ ─ ─ ─ ┘ └─────────┘ └ ─ ─ ─ ─ ┘
///
/// logical group values opt_filter logical group values opt_filter
///
/// ```
fn invoke_per_accumulator<F>(
&mut self,
values: &[ArrayRef],
group_indices: &[usize],
opt_filter: Option<&BooleanArray>,
total_num_groups: usize,
f: F,
) -> Result<()>
where
F: Fn(&mut dyn Accumulator, &[ArrayRef]) -> Result<()>,
{
self.make_accumulators_if_needed(total_num_groups)?;
assert_eq!(values[0].len(), group_indices.len());
// figure out which input rows correspond to which groups.
// Note that self.state.indices starts empty for all groups
// (it is cleared out below)
for (idx, group_index) in group_indices.iter().enumerate() {
self.states[*group_index].indices.push(idx as u32);
}
// groups_with_rows holds a list of group indexes that have
// any rows that need to be accumulated, stored in order of
// group_index
let mut groups_with_rows = vec![];
// batch_indices holds indices into values, each group is contiguous
let mut batch_indices = vec![];
// offsets[i] is index into batch_indices where the rows for
// group_index i starts
let mut offsets = vec![0];
let mut offset_so_far = 0;
for (group_index, state) in self.states.iter_mut().enumerate() {
let indices = &state.indices;
if indices.is_empty() {
continue;
}
groups_with_rows.push(group_index);
batch_indices.extend_from_slice(indices);
offset_so_far += indices.len();
offsets.push(offset_so_far);
}
let batch_indices = batch_indices.into();
// reorder the values and opt_filter by batch_indices so that
// all values for each group are contiguous, then invoke the
// accumulator once per group with values
let values = take_arrays(values, &batch_indices, None)?;
let opt_filter = get_filter_at_indices(opt_filter, &batch_indices)?;
// invoke each accumulator with the appropriate rows, first
// pulling the input arguments for this group into their own
// RecordBatch(es)
let iter = groups_with_rows.iter().zip(offsets.windows(2));
let mut sizes_pre = 0;
let mut sizes_post = 0;
for (&group_idx, offsets) in iter {
let state = &mut self.states[group_idx];
sizes_pre += state.size();
let values_to_accumulate = slice_and_maybe_filter(
&values,
opt_filter.as_ref().map(|f| f.as_boolean()),
offsets,
)?;
f(state.accumulator.as_mut(), &values_to_accumulate)?;
// clear out the state so they are empty for next
// iteration
state.indices.clear();
sizes_post += state.size();
}
self.adjust_allocation(sizes_pre, sizes_post);
Ok(())
}
/// Increment the allocation by `n`
///
/// See [`Self::allocation_bytes`] for rationale.
fn add_allocation(&mut self, size: usize) {
self.allocation_bytes += size;
}
/// Decrease the allocation by `n`
///
/// See [`Self::allocation_bytes`] for rationale.
fn free_allocation(&mut self, size: usize) {
// use saturating sub to avoid errors if the accumulators
// report erronious sizes
self.allocation_bytes = self.allocation_bytes.saturating_sub(size)
}
/// Adjusts the allocation for something that started with
/// start_size and now has new_size avoiding overflow
///
/// See [`Self::allocation_bytes`] for rationale.
fn adjust_allocation(&mut self, old_size: usize, new_size: usize) {
if new_size > old_size {
self.add_allocation(new_size - old_size)
} else {
self.free_allocation(old_size - new_size)
}
}
}
impl GroupsAccumulator for GroupsAccumulatorAdapter {
fn update_batch(
&mut self,
values: &[ArrayRef],
group_indices: &[usize],
opt_filter: Option<&BooleanArray>,
total_num_groups: usize,
) -> Result<()> {
self.invoke_per_accumulator(
values,
group_indices,
opt_filter,
total_num_groups,
|accumulator, values_to_accumulate| {
accumulator.update_batch(values_to_accumulate)
},
)?;
Ok(())
}
fn evaluate(&mut self, emit_to: EmitTo) -> Result<ArrayRef> {
let vec_size_pre = self.states.allocated_size();
let states = emit_to.take_needed(&mut self.states);
let results: Vec<ScalarValue> = states
.into_iter()
.map(|mut state| {
self.free_allocation(state.size());
state.accumulator.evaluate()
})
.collect::<Result<_>>()?;
let result = ScalarValue::iter_to_array(results);
self.adjust_allocation(vec_size_pre, self.states.allocated_size());
result
}
// filtered_null_mask(opt_filter, &values);
fn state(&mut self, emit_to: EmitTo) -> Result<Vec<ArrayRef>> {
let vec_size_pre = self.states.allocated_size();
let states = emit_to.take_needed(&mut self.states);
// each accumulator produces a potential vector of values
// which we need to form into columns
let mut results: Vec<Vec<ScalarValue>> = vec![];
for mut state in states {
self.free_allocation(state.size());
let accumulator_state = state.accumulator.state()?;
results.resize_with(accumulator_state.len(), Vec::new);
for (idx, state_val) in accumulator_state.into_iter().enumerate() {
results[idx].push(state_val);
}
}
// create an array for each intermediate column
let arrays = results
.into_iter()
.map(ScalarValue::iter_to_array)
.collect::<Result<Vec<_>>>()?;
// double check each array has the same length (aka the
// accumulator was implemented correctly
if let Some(first_col) = arrays.first() {
for arr in &arrays {
assert_eq!(arr.len(), first_col.len())
}
}
self.adjust_allocation(vec_size_pre, self.states.allocated_size());
Ok(arrays)
}
fn merge_batch(
&mut self,
values: &[ArrayRef],
group_indices: &[usize],
opt_filter: Option<&BooleanArray>,
total_num_groups: usize,
) -> Result<()> {
self.invoke_per_accumulator(
values,
group_indices,
opt_filter,
total_num_groups,
|accumulator, values_to_accumulate| {
accumulator.merge_batch(values_to_accumulate)?;
Ok(())
},
)?;
Ok(())
}
fn size(&self) -> usize {
self.allocation_bytes
}
fn convert_to_state(
&self,
values: &[ArrayRef],
opt_filter: Option<&BooleanArray>,
) -> Result<Vec<ArrayRef>> {
let num_rows = values[0].len();
// If there are no rows, return empty arrays
if num_rows == 0 {
// create empty accumulator to get the state types
let empty_state = (self.factory)()?.state()?;
let empty_arrays = empty_state
.into_iter()
.map(|state_val| new_empty_array(&state_val.data_type()))
.collect::<Vec<_>>();
return Ok(empty_arrays);
}
// Each row has its respective group
let mut results = vec![];
for row_idx in 0..num_rows {
// Create the empty accumulator for converting
let mut converted_accumulator = (self.factory)()?;
// Convert row to states
let values_to_accumulate =
slice_and_maybe_filter(values, opt_filter, &[row_idx, row_idx + 1])?;
converted_accumulator.update_batch(&values_to_accumulate)?;
let states = converted_accumulator.state()?;
// Resize results to have enough columns according to the converted states
results.resize_with(states.len(), || Vec::with_capacity(num_rows));
// Add the states to results
for (idx, state_val) in states.into_iter().enumerate() {
results[idx].push(state_val);
}
}
let arrays = results
.into_iter()
.map(ScalarValue::iter_to_array)
.collect::<Result<Vec<_>>>()?;
Ok(arrays)
}
fn supports_convert_to_state(&self) -> bool {
true
}
}
/// Extension trait for [`Vec`] to account for allocations.
pub trait VecAllocExt {
/// Item type.
type T;
/// Return the amount of memory allocated by this Vec (not
/// recursively counting any heap allocations contained within the
/// structure). Does not include the size of `self`
fn allocated_size(&self) -> usize;
}
impl<T> VecAllocExt for Vec<T> {
type T = T;
fn allocated_size(&self) -> usize {
size_of::<T>() * self.capacity()
}
}
fn get_filter_at_indices(
opt_filter: Option<&BooleanArray>,
indices: &PrimitiveArray<UInt32Type>,
) -> Result<Option<ArrayRef>> {
opt_filter
.map(|filter| {
compute::take(
&filter, indices, None, // None: no index check
)
})
.transpose()
.map_err(|e| arrow_datafusion_err!(e))
}
// Copied from physical-plan
pub(crate) fn slice_and_maybe_filter(
aggr_array: &[ArrayRef],
filter_opt: Option<&BooleanArray>,
offsets: &[usize],
) -> Result<Vec<ArrayRef>> {
let (offset, length) = (offsets[0], offsets[1] - offsets[0]);
let sliced_arrays: Vec<ArrayRef> = aggr_array
.iter()
.map(|array| array.slice(offset, length))
.collect();
if let Some(f) = filter_opt {
let filter = f.slice(offset, length);
sliced_arrays
.iter()
.map(|array| {
compute::filter(&array, &filter).map_err(|e| arrow_datafusion_err!(e))
})
.collect()
} else {
Ok(sliced_arrays)
}
}