datafusion_functions_aggregate_common/aggregate/groups_accumulator/
prim_op.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use std::mem::size_of;
use std::sync::Arc;

use arrow::array::{ArrayRef, AsArray, BooleanArray, PrimitiveArray};
use arrow::buffer::NullBuffer;
use arrow::compute;
use arrow::datatypes::ArrowPrimitiveType;
use arrow::datatypes::DataType;
use datafusion_common::{internal_datafusion_err, DataFusionError, Result};
use datafusion_expr_common::groups_accumulator::{EmitTo, GroupsAccumulator};

use super::accumulate::NullState;

/// An accumulator that implements a single operation over
/// [`ArrowPrimitiveType`] where the accumulated state is the same as
/// the input type (such as `Sum`)
///
/// F: The function to apply to two elements. The first argument is
/// the existing value and should be updated with the second value
/// (e.g. [`BitAndAssign`] style).
///
/// [`BitAndAssign`]: std::ops::BitAndAssign
#[derive(Debug)]
pub struct PrimitiveGroupsAccumulator<T, F>
where
    T: ArrowPrimitiveType + Send,
    F: Fn(&mut T::Native, T::Native) + Send + Sync,
{
    /// values per group, stored as the native type
    values: Vec<T::Native>,

    /// The output type (needed for Decimal precision and scale)
    data_type: DataType,

    /// The starting value for new groups
    starting_value: T::Native,

    /// Track nulls in the input / filters
    null_state: NullState,

    /// Function that computes the primitive result
    prim_fn: F,
}

impl<T, F> PrimitiveGroupsAccumulator<T, F>
where
    T: ArrowPrimitiveType + Send,
    F: Fn(&mut T::Native, T::Native) + Send + Sync,
{
    pub fn new(data_type: &DataType, prim_fn: F) -> Self {
        Self {
            values: vec![],
            data_type: data_type.clone(),
            null_state: NullState::new(),
            starting_value: T::default_value(),
            prim_fn,
        }
    }

    /// Set the starting values for new groups
    pub fn with_starting_value(mut self, starting_value: T::Native) -> Self {
        self.starting_value = starting_value;
        self
    }
}

impl<T, F> GroupsAccumulator for PrimitiveGroupsAccumulator<T, F>
where
    T: ArrowPrimitiveType + Send,
    F: Fn(&mut T::Native, T::Native) + Send + Sync,
{
    fn update_batch(
        &mut self,
        values: &[ArrayRef],
        group_indices: &[usize],
        opt_filter: Option<&BooleanArray>,
        total_num_groups: usize,
    ) -> Result<()> {
        assert_eq!(values.len(), 1, "single argument to update_batch");
        let values = values[0].as_primitive::<T>();

        // update values
        self.values.resize(total_num_groups, self.starting_value);

        // NullState dispatches / handles tracking nulls and groups that saw no values
        self.null_state.accumulate(
            group_indices,
            values,
            opt_filter,
            total_num_groups,
            |group_index, new_value| {
                let value = &mut self.values[group_index];
                (self.prim_fn)(value, new_value);
            },
        );

        Ok(())
    }

    fn evaluate(&mut self, emit_to: EmitTo) -> Result<ArrayRef> {
        let values = emit_to.take_needed(&mut self.values);
        let nulls = self.null_state.build(emit_to);
        let values = PrimitiveArray::<T>::new(values.into(), Some(nulls)) // no copy
            .with_data_type(self.data_type.clone());
        Ok(Arc::new(values))
    }

    fn state(&mut self, emit_to: EmitTo) -> Result<Vec<ArrayRef>> {
        self.evaluate(emit_to).map(|arr| vec![arr])
    }

    fn merge_batch(
        &mut self,
        values: &[ArrayRef],
        group_indices: &[usize],
        opt_filter: Option<&BooleanArray>,
        total_num_groups: usize,
    ) -> Result<()> {
        // update / merge are the same
        self.update_batch(values, group_indices, opt_filter, total_num_groups)
    }

    /// Converts an input batch directly to a state batch
    ///
    /// The state is:
    /// - self.prim_fn for all non null, non filtered values
    /// - null otherwise
    ///
    fn convert_to_state(
        &self,
        values: &[ArrayRef],
        opt_filter: Option<&BooleanArray>,
    ) -> Result<Vec<ArrayRef>> {
        let values = values[0].as_primitive::<T>().clone();

        // Initializing state with starting values
        let initial_state =
            PrimitiveArray::<T>::from_value(self.starting_value, values.len());

        // Recalculating values in case there is filter
        let values = match opt_filter {
            None => values,
            Some(filter) => {
                let (filter_values, filter_nulls) = filter.clone().into_parts();
                // Calculating filter mask as a result of bitand of filter, and converting it to null buffer
                let filter_bool = match filter_nulls {
                    Some(filter_nulls) => filter_nulls.inner() & &filter_values,
                    None => filter_values,
                };
                let filter_nulls = NullBuffer::from(filter_bool);

                // Rebuilding input values with a new nulls mask, which is equal to
                // the union of original nulls and filter mask
                let (dt, values_buf, original_nulls) = values.into_parts();
                let nulls_buf =
                    NullBuffer::union(original_nulls.as_ref(), Some(&filter_nulls));
                PrimitiveArray::<T>::new(values_buf, nulls_buf).with_data_type(dt)
            }
        };

        let state_values = compute::binary_mut(initial_state, &values, |mut x, y| {
            (self.prim_fn)(&mut x, y);
            x
        });
        let state_values = state_values
            .map_err(|_| {
                internal_datafusion_err!(
                    "initial_values underlying buffer must not be shared"
                )
            })?
            .map_err(DataFusionError::from)?
            .with_data_type(self.data_type.clone());

        Ok(vec![Arc::new(state_values)])
    }

    fn supports_convert_to_state(&self) -> bool {
        true
    }

    fn size(&self) -> usize {
        self.values.capacity() * size_of::<T::Native>() + self.null_state.size()
    }
}