datafusion_functions_aggregate_common/
utils.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use std::sync::Arc;

use arrow::array::{ArrayRef, AsArray};
use arrow::datatypes::ArrowNativeType;
use arrow::{
    array::ArrowNativeTypeOp,
    compute::SortOptions,
    datatypes::{
        DataType, Decimal128Type, DecimalType, Field, TimeUnit, TimestampMicrosecondType,
        TimestampMillisecondType, TimestampNanosecondType, TimestampSecondType,
        ToByteSlice,
    },
};
use datafusion_common::{exec_err, DataFusionError, Result};
use datafusion_expr_common::accumulator::Accumulator;
use datafusion_physical_expr_common::sort_expr::LexOrderingRef;

/// Convert scalar values from an accumulator into arrays.
pub fn get_accum_scalar_values_as_arrays(
    accum: &mut dyn Accumulator,
) -> Result<Vec<ArrayRef>> {
    accum
        .state()?
        .iter()
        .map(|s| s.to_array_of_size(1))
        .collect()
}

/// Adjust array type metadata if needed
///
/// Since `Decimal128Arrays` created from `Vec<NativeType>` have
/// default precision and scale, this function adjusts the output to
/// match `data_type`, if necessary
pub fn adjust_output_array(data_type: &DataType, array: ArrayRef) -> Result<ArrayRef> {
    let array = match data_type {
        DataType::Decimal128(p, s) => Arc::new(
            array
                .as_primitive::<Decimal128Type>()
                .clone()
                .with_precision_and_scale(*p, *s)?,
        ) as ArrayRef,
        DataType::Timestamp(TimeUnit::Nanosecond, tz) => Arc::new(
            array
                .as_primitive::<TimestampNanosecondType>()
                .clone()
                .with_timezone_opt(tz.clone()),
        ),
        DataType::Timestamp(TimeUnit::Microsecond, tz) => Arc::new(
            array
                .as_primitive::<TimestampMicrosecondType>()
                .clone()
                .with_timezone_opt(tz.clone()),
        ),
        DataType::Timestamp(TimeUnit::Millisecond, tz) => Arc::new(
            array
                .as_primitive::<TimestampMillisecondType>()
                .clone()
                .with_timezone_opt(tz.clone()),
        ),
        DataType::Timestamp(TimeUnit::Second, tz) => Arc::new(
            array
                .as_primitive::<TimestampSecondType>()
                .clone()
                .with_timezone_opt(tz.clone()),
        ),
        // no adjustment needed for other arrays
        _ => array,
    };
    Ok(array)
}

/// Construct corresponding fields for lexicographical ordering requirement expression
pub fn ordering_fields(
    ordering_req: LexOrderingRef,
    // Data type of each expression in the ordering requirement
    data_types: &[DataType],
) -> Vec<Field> {
    ordering_req
        .iter()
        .zip(data_types.iter())
        .map(|(sort_expr, dtype)| {
            Field::new(
                sort_expr.expr.to_string().as_str(),
                dtype.clone(),
                // Multi partitions may be empty hence field should be nullable.
                true,
            )
        })
        .collect()
}

/// Selects the sort option attribute from all the given `PhysicalSortExpr`s.
pub fn get_sort_options(ordering_req: LexOrderingRef) -> Vec<SortOptions> {
    ordering_req.iter().map(|item| item.options).collect()
}

/// A wrapper around a type to provide hash for floats
#[derive(Copy, Clone, Debug)]
pub struct Hashable<T>(pub T);

impl<T: ToByteSlice> std::hash::Hash for Hashable<T> {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        self.0.to_byte_slice().hash(state)
    }
}

impl<T: ArrowNativeTypeOp> PartialEq for Hashable<T> {
    fn eq(&self, other: &Self) -> bool {
        self.0.is_eq(other.0)
    }
}

impl<T: ArrowNativeTypeOp> Eq for Hashable<T> {}

/// Computes averages for `Decimal128`/`Decimal256` values, checking for overflow
///
/// This is needed because different precisions for Decimal128/Decimal256 can
/// store different ranges of values and thus sum/count may not fit in
/// the target type.
///
/// For example, the precision is 3, the max of value is `999` and the min
/// value is `-999`
pub struct DecimalAverager<T: DecimalType> {
    /// scale factor for sum values (10^sum_scale)
    sum_mul: T::Native,
    /// scale factor for target (10^target_scale)
    target_mul: T::Native,
    /// the output precision
    target_precision: u8,
}

impl<T: DecimalType> DecimalAverager<T> {
    /// Create a new `DecimalAverager`:
    ///
    /// * sum_scale: the scale of `sum` values passed to [`Self::avg`]
    /// * target_precision: the output precision
    /// * target_scale: the output scale
    ///
    /// Errors if the resulting data can not be stored
    pub fn try_new(
        sum_scale: i8,
        target_precision: u8,
        target_scale: i8,
    ) -> Result<Self> {
        let sum_mul = T::Native::from_usize(10_usize)
            .map(|b| b.pow_wrapping(sum_scale as u32))
            .ok_or(DataFusionError::Internal(
                "Failed to compute sum_mul in DecimalAverager".to_string(),
            ))?;

        let target_mul = T::Native::from_usize(10_usize)
            .map(|b| b.pow_wrapping(target_scale as u32))
            .ok_or(DataFusionError::Internal(
                "Failed to compute target_mul in DecimalAverager".to_string(),
            ))?;

        if target_mul >= sum_mul {
            Ok(Self {
                sum_mul,
                target_mul,
                target_precision,
            })
        } else {
            // can't convert the lit decimal to the returned data type
            exec_err!("Arithmetic Overflow in AvgAccumulator")
        }
    }

    /// Returns the `sum`/`count` as a i128/i256 Decimal128/Decimal256 with
    /// target_scale and target_precision and reporting overflow.
    ///
    /// * sum: The total sum value stored as Decimal128 with sum_scale
    ///   (passed to `Self::try_new`)
    /// * count: total count, stored as a i128/i256 (*NOT* a Decimal128/Decimal256 value)
    #[inline(always)]
    pub fn avg(&self, sum: T::Native, count: T::Native) -> Result<T::Native> {
        if let Ok(value) = sum.mul_checked(self.target_mul.div_wrapping(self.sum_mul)) {
            let new_value = value.div_wrapping(count);

            let validate =
                T::validate_decimal_precision(new_value, self.target_precision);

            if validate.is_ok() {
                Ok(new_value)
            } else {
                exec_err!("Arithmetic Overflow in AvgAccumulator")
            }
        } else {
            // can't convert the lit decimal to the returned data type
            exec_err!("Arithmetic Overflow in AvgAccumulator")
        }
    }
}