1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! [`VarianceSample`]: variance sample aggregations.
//! [`VariancePopulation`]: variance population aggregations.

use std::fmt::Debug;

use arrow::{
    array::{ArrayRef, Float64Array, UInt64Array},
    compute::kernels::cast,
    datatypes::{DataType, Field},
};

use datafusion_common::{
    downcast_value, not_impl_err, plan_err, DataFusionError, Result, ScalarValue,
};
use datafusion_expr::{
    function::{AccumulatorArgs, StateFieldsArgs},
    utils::format_state_name,
    Accumulator, AggregateUDFImpl, Signature, Volatility,
};
use datafusion_physical_expr_common::aggregate::stats::StatsType;

make_udaf_expr_and_func!(
    VarianceSample,
    var_sample,
    expression,
    "Computes the sample variance.",
    var_samp_udaf
);

make_udaf_expr_and_func!(
    VariancePopulation,
    var_pop,
    expression,
    "Computes the population variance.",
    var_pop_udaf
);

pub struct VarianceSample {
    signature: Signature,
    aliases: Vec<String>,
}

impl Debug for VarianceSample {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        f.debug_struct("VarianceSample")
            .field("name", &self.name())
            .field("signature", &self.signature)
            .finish()
    }
}

impl Default for VarianceSample {
    fn default() -> Self {
        Self::new()
    }
}

impl VarianceSample {
    pub fn new() -> Self {
        Self {
            aliases: vec![String::from("var_sample"), String::from("var_samp")],
            signature: Signature::numeric(1, Volatility::Immutable),
        }
    }
}

impl AggregateUDFImpl for VarianceSample {
    fn as_any(&self) -> &dyn std::any::Any {
        self
    }

    fn name(&self) -> &str {
        "var"
    }

    fn signature(&self) -> &Signature {
        &self.signature
    }

    fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
        if !arg_types[0].is_numeric() {
            return plan_err!("Variance requires numeric input types");
        }

        Ok(DataType::Float64)
    }

    fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<Field>> {
        let name = args.name;
        Ok(vec![
            Field::new(format_state_name(name, "count"), DataType::UInt64, true),
            Field::new(format_state_name(name, "mean"), DataType::Float64, true),
            Field::new(format_state_name(name, "m2"), DataType::Float64, true),
        ])
    }

    fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
        if acc_args.is_distinct {
            return not_impl_err!("VAR(DISTINCT) aggregations are not available");
        }

        Ok(Box::new(VarianceAccumulator::try_new(StatsType::Sample)?))
    }

    fn aliases(&self) -> &[String] {
        &self.aliases
    }
}

pub struct VariancePopulation {
    signature: Signature,
    aliases: Vec<String>,
}

impl Debug for VariancePopulation {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        f.debug_struct("VariancePopulation")
            .field("name", &self.name())
            .field("signature", &self.signature)
            .finish()
    }
}

impl Default for VariancePopulation {
    fn default() -> Self {
        Self::new()
    }
}

impl VariancePopulation {
    pub fn new() -> Self {
        Self {
            aliases: vec![String::from("var_population")],
            signature: Signature::numeric(1, Volatility::Immutable),
        }
    }
}

impl AggregateUDFImpl for VariancePopulation {
    fn as_any(&self) -> &dyn std::any::Any {
        self
    }

    fn name(&self) -> &str {
        "var_pop"
    }

    fn signature(&self) -> &Signature {
        &self.signature
    }

    fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
        if !arg_types[0].is_numeric() {
            return plan_err!("Variance requires numeric input types");
        }

        Ok(DataType::Float64)
    }

    fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<Field>> {
        let name = args.name;
        Ok(vec![
            Field::new(format_state_name(name, "count"), DataType::UInt64, true),
            Field::new(format_state_name(name, "mean"), DataType::Float64, true),
            Field::new(format_state_name(name, "m2"), DataType::Float64, true),
        ])
    }

    fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
        if acc_args.is_distinct {
            return not_impl_err!("VAR_POP(DISTINCT) aggregations are not available");
        }

        Ok(Box::new(VarianceAccumulator::try_new(
            StatsType::Population,
        )?))
    }

    fn aliases(&self) -> &[String] {
        &self.aliases
    }
}

/// An accumulator to compute variance
/// The algorithm used is an online implementation and numerically stable. It is based on this paper:
/// Welford, B. P. (1962). "Note on a method for calculating corrected sums of squares and products".
/// Technometrics. 4 (3): 419–420. doi:10.2307/1266577. JSTOR 1266577.
///
/// The algorithm has been analyzed here:
/// Ling, Robert F. (1974). "Comparison of Several Algorithms for Computing Sample Means and Variances".
/// Journal of the American Statistical Association. 69 (348): 859–866. doi:10.2307/2286154. JSTOR 2286154.

#[derive(Debug)]
pub struct VarianceAccumulator {
    m2: f64,
    mean: f64,
    count: u64,
    stats_type: StatsType,
}

impl VarianceAccumulator {
    /// Creates a new `VarianceAccumulator`
    pub fn try_new(s_type: StatsType) -> Result<Self> {
        Ok(Self {
            m2: 0_f64,
            mean: 0_f64,
            count: 0_u64,
            stats_type: s_type,
        })
    }

    pub fn get_count(&self) -> u64 {
        self.count
    }

    pub fn get_mean(&self) -> f64 {
        self.mean
    }

    pub fn get_m2(&self) -> f64 {
        self.m2
    }
}

impl Accumulator for VarianceAccumulator {
    fn state(&mut self) -> Result<Vec<ScalarValue>> {
        Ok(vec![
            ScalarValue::from(self.count),
            ScalarValue::from(self.mean),
            ScalarValue::from(self.m2),
        ])
    }

    fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
        let values = &cast(&values[0], &DataType::Float64)?;
        let arr = downcast_value!(values, Float64Array).iter().flatten();

        for value in arr {
            let new_count = self.count + 1;
            let delta1 = value - self.mean;
            let new_mean = delta1 / new_count as f64 + self.mean;
            let delta2 = value - new_mean;
            let new_m2 = self.m2 + delta1 * delta2;

            self.count += 1;
            self.mean = new_mean;
            self.m2 = new_m2;
        }

        Ok(())
    }

    fn retract_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
        let values = &cast(&values[0], &DataType::Float64)?;
        let arr = downcast_value!(values, Float64Array).iter().flatten();

        for value in arr {
            let new_count = self.count - 1;
            let delta1 = self.mean - value;
            let new_mean = delta1 / new_count as f64 + self.mean;
            let delta2 = new_mean - value;
            let new_m2 = self.m2 - delta1 * delta2;

            self.count -= 1;
            self.mean = new_mean;
            self.m2 = new_m2;
        }

        Ok(())
    }

    fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
        let counts = downcast_value!(states[0], UInt64Array);
        let means = downcast_value!(states[1], Float64Array);
        let m2s = downcast_value!(states[2], Float64Array);

        for i in 0..counts.len() {
            let c = counts.value(i);
            if c == 0_u64 {
                continue;
            }
            let new_count = self.count + c;
            let new_mean = self.mean * self.count as f64 / new_count as f64
                + means.value(i) * c as f64 / new_count as f64;
            let delta = self.mean - means.value(i);
            let new_m2 = self.m2
                + m2s.value(i)
                + delta * delta * self.count as f64 * c as f64 / new_count as f64;

            self.count = new_count;
            self.mean = new_mean;
            self.m2 = new_m2;
        }
        Ok(())
    }

    fn evaluate(&mut self) -> Result<ScalarValue> {
        let count = match self.stats_type {
            StatsType::Population => self.count,
            StatsType::Sample => {
                if self.count > 0 {
                    self.count - 1
                } else {
                    self.count
                }
            }
        };

        Ok(ScalarValue::Float64(match self.count {
            0 => None,
            1 => {
                if let StatsType::Population = self.stats_type {
                    Some(0.0)
                } else {
                    None
                }
            }
            _ => Some(self.m2 / count as f64),
        }))
    }

    fn size(&self) -> usize {
        std::mem::size_of_val(self)
    }

    fn supports_retract_batch(&self) -> bool {
        true
    }
}