use std::any::Any;
use std::fmt::{Debug, Formatter};
use arrow::{array::ArrayRef, datatypes::DataType, datatypes::Field};
use datafusion_common::{internal_err, not_impl_err, Result};
use datafusion_common::{plan_err, ScalarValue};
use datafusion_expr::function::{AccumulatorArgs, StateFieldsArgs};
use datafusion_expr::utils::format_state_name;
use datafusion_expr::{Accumulator, AggregateUDFImpl, Signature, Volatility};
use datafusion_physical_expr_common::aggregate::stats::StatsType;
use crate::variance::VarianceAccumulator;
make_udaf_expr_and_func!(
Stddev,
stddev,
expression,
"Compute the standard deviation of a set of numbers",
stddev_udaf
);
pub struct Stddev {
signature: Signature,
alias: Vec<String>,
}
impl Debug for Stddev {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
f.debug_struct("Stddev")
.field("name", &self.name())
.field("signature", &self.signature)
.finish()
}
}
impl Default for Stddev {
fn default() -> Self {
Self::new()
}
}
impl Stddev {
pub fn new() -> Self {
Self {
signature: Signature::numeric(1, Volatility::Immutable),
alias: vec!["stddev_samp".to_string()],
}
}
}
impl AggregateUDFImpl for Stddev {
fn as_any(&self) -> &dyn Any {
self
}
fn name(&self) -> &str {
"stddev"
}
fn signature(&self) -> &Signature {
&self.signature
}
fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
if !arg_types[0].is_numeric() {
return plan_err!("Stddev requires numeric input types");
}
Ok(DataType::Float64)
}
fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<Field>> {
Ok(vec![
Field::new(
format_state_name(args.name, "count"),
DataType::UInt64,
true,
),
Field::new(
format_state_name(args.name, "mean"),
DataType::Float64,
true,
),
Field::new(format_state_name(args.name, "m2"), DataType::Float64, true),
])
}
fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
if acc_args.is_distinct {
return not_impl_err!("STDDEV_POP(DISTINCT) aggregations are not available");
}
Ok(Box::new(StddevAccumulator::try_new(StatsType::Sample)?))
}
fn aliases(&self) -> &[String] {
&self.alias
}
}
make_udaf_expr_and_func!(
StddevPop,
stddev_pop,
expression,
"Compute the population standard deviation of a set of numbers",
stddev_pop_udaf
);
pub struct StddevPop {
signature: Signature,
}
impl Debug for StddevPop {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
f.debug_struct("StddevPop")
.field("name", &self.name())
.field("signature", &self.signature)
.finish()
}
}
impl Default for StddevPop {
fn default() -> Self {
Self::new()
}
}
impl StddevPop {
pub fn new() -> Self {
Self {
signature: Signature::numeric(1, Volatility::Immutable),
}
}
}
impl AggregateUDFImpl for StddevPop {
fn as_any(&self) -> &dyn Any {
self
}
fn name(&self) -> &str {
"stddev_pop"
}
fn signature(&self) -> &Signature {
&self.signature
}
fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<Field>> {
Ok(vec![
Field::new(
format_state_name(args.name, "count"),
DataType::UInt64,
true,
),
Field::new(
format_state_name(args.name, "mean"),
DataType::Float64,
true,
),
Field::new(format_state_name(args.name, "m2"), DataType::Float64, true),
])
}
fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
if acc_args.is_distinct {
return not_impl_err!("STDDEV_POP(DISTINCT) aggregations are not available");
}
Ok(Box::new(StddevAccumulator::try_new(StatsType::Population)?))
}
fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
if !arg_types[0].is_numeric() {
return plan_err!("StddevPop requires numeric input types");
}
Ok(DataType::Float64)
}
}
#[derive(Debug)]
pub struct StddevAccumulator {
variance: VarianceAccumulator,
}
impl StddevAccumulator {
pub fn try_new(s_type: StatsType) -> Result<Self> {
Ok(Self {
variance: VarianceAccumulator::try_new(s_type)?,
})
}
pub fn get_m2(&self) -> f64 {
self.variance.get_m2()
}
}
impl Accumulator for StddevAccumulator {
fn state(&mut self) -> Result<Vec<ScalarValue>> {
Ok(vec![
ScalarValue::from(self.variance.get_count()),
ScalarValue::from(self.variance.get_mean()),
ScalarValue::from(self.variance.get_m2()),
])
}
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
self.variance.update_batch(values)
}
fn retract_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
self.variance.retract_batch(values)
}
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
self.variance.merge_batch(states)
}
fn evaluate(&mut self) -> Result<ScalarValue> {
let variance = self.variance.evaluate()?;
match variance {
ScalarValue::Float64(e) => {
if e.is_none() {
Ok(ScalarValue::Float64(None))
} else {
Ok(ScalarValue::Float64(e.map(|f| f.sqrt())))
}
}
_ => internal_err!("Variance should be f64"),
}
}
fn size(&self) -> usize {
std::mem::align_of_val(self) - std::mem::align_of_val(&self.variance)
+ self.variance.size()
}
fn supports_retract_batch(&self) -> bool {
self.variance.supports_retract_batch()
}
}
#[cfg(test)]
mod tests {
use std::sync::Arc;
use arrow::{array::*, datatypes::*};
use datafusion_common::DFSchema;
use datafusion_expr::AggregateUDF;
use datafusion_physical_expr_common::aggregate::utils::get_accum_scalar_values_as_arrays;
use datafusion_physical_expr_common::expressions::column::col;
use super::*;
#[test]
fn stddev_f64_merge_1() -> Result<()> {
let a = Arc::new(Float64Array::from(vec![1_f64, 2_f64, 3_f64]));
let b = Arc::new(Float64Array::from(vec![4_f64, 5_f64]));
let schema = Schema::new(vec![Field::new("a", DataType::Float64, false)]);
let batch1 = RecordBatch::try_new(Arc::new(schema.clone()), vec![a])?;
let batch2 = RecordBatch::try_new(Arc::new(schema.clone()), vec![b])?;
let agg1 = stddev_pop_udaf();
let agg2 = stddev_pop_udaf();
let actual = merge(&batch1, &batch2, agg1, agg2, &schema)?;
assert_eq!(actual, ScalarValue::from(std::f64::consts::SQRT_2));
Ok(())
}
#[test]
fn stddev_f64_merge_2() -> Result<()> {
let a = Arc::new(Float64Array::from(vec![1_f64, 2_f64, 3_f64, 4_f64, 5_f64]));
let b = Arc::new(Float64Array::from(vec![None]));
let schema = Schema::new(vec![Field::new("a", DataType::Float64, true)]);
let batch1 = RecordBatch::try_new(Arc::new(schema.clone()), vec![a])?;
let batch2 = RecordBatch::try_new(Arc::new(schema.clone()), vec![b])?;
let agg1 = stddev_pop_udaf();
let agg2 = stddev_pop_udaf();
let actual = merge(&batch1, &batch2, agg1, agg2, &schema)?;
assert_eq!(actual, ScalarValue::from(std::f64::consts::SQRT_2));
Ok(())
}
fn merge(
batch1: &RecordBatch,
batch2: &RecordBatch,
agg1: Arc<AggregateUDF>,
agg2: Arc<AggregateUDF>,
schema: &Schema,
) -> Result<ScalarValue> {
let dfschema = DFSchema::empty();
let args1 = AccumulatorArgs {
data_type: &DataType::Float64,
schema,
dfschema: &dfschema,
ignore_nulls: false,
sort_exprs: &[],
name: "a",
is_distinct: false,
is_reversed: false,
input_types: &[DataType::Float64],
input_exprs: &[datafusion_expr::col("a")],
};
let args2 = AccumulatorArgs {
data_type: &DataType::Float64,
schema,
dfschema: &dfschema,
ignore_nulls: false,
sort_exprs: &[],
name: "a",
is_distinct: false,
is_reversed: false,
input_types: &[DataType::Float64],
input_exprs: &[datafusion_expr::col("a")],
};
let mut accum1 = agg1.accumulator(args1)?;
let mut accum2 = agg2.accumulator(args2)?;
let value1 = vec![col("a", schema)?
.evaluate(batch1)
.and_then(|v| v.into_array(batch1.num_rows()))?];
let value2 = vec![col("a", schema)?
.evaluate(batch2)
.and_then(|v| v.into_array(batch2.num_rows()))?];
accum1.update_batch(&value1)?;
accum2.update_batch(&value2)?;
let state2 = get_accum_scalar_values_as_arrays(accum2.as_mut())?;
accum1.merge_batch(&state2)?;
let result = accum1.evaluate()?;
Ok(result)
}
}