1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Defines physical expressions that can evaluated at runtime during query execution

use std::any::Any;
use std::fmt::Debug;

use arrow::array::Float64Array;
use arrow::{
    array::{ArrayRef, UInt64Array},
    compute::cast,
    datatypes::DataType,
    datatypes::Field,
};
use datafusion_common::{downcast_value, plan_err, unwrap_or_internal_err, ScalarValue};
use datafusion_common::{DataFusionError, Result};
use datafusion_expr::function::{AccumulatorArgs, StateFieldsArgs};
use datafusion_expr::type_coercion::aggregates::NUMERICS;
use datafusion_expr::utils::format_state_name;
use datafusion_expr::{Accumulator, AggregateUDFImpl, Signature, Volatility};

macro_rules! make_regr_udaf_expr_and_func {
    ($EXPR_FN:ident, $AGGREGATE_UDF_FN:ident, $REGR_TYPE:expr) => {
        make_udaf_expr!($EXPR_FN, expr_y expr_x, concat!("Compute a linear regression of type [", stringify!($REGR_TYPE), "]"), $AGGREGATE_UDF_FN);
        create_func!($EXPR_FN, $AGGREGATE_UDF_FN, Regr::new($REGR_TYPE, stringify!($EXPR_FN)));
    }
}

make_regr_udaf_expr_and_func!(regr_slope, regr_slope_udaf, RegrType::Slope);
make_regr_udaf_expr_and_func!(regr_intercept, regr_intercept_udaf, RegrType::Intercept);
make_regr_udaf_expr_and_func!(regr_count, regr_count_udaf, RegrType::Count);
make_regr_udaf_expr_and_func!(regr_r2, regr_r2_udaf, RegrType::R2);
make_regr_udaf_expr_and_func!(regr_avgx, regr_avgx_udaf, RegrType::AvgX);
make_regr_udaf_expr_and_func!(regr_avgy, regr_avgy_udaf, RegrType::AvgY);
make_regr_udaf_expr_and_func!(regr_sxx, regr_sxx_udaf, RegrType::SXX);
make_regr_udaf_expr_and_func!(regr_syy, regr_syy_udaf, RegrType::SYY);
make_regr_udaf_expr_and_func!(regr_sxy, regr_sxy_udaf, RegrType::SXY);

pub struct Regr {
    signature: Signature,
    regr_type: RegrType,
    func_name: &'static str,
}

impl Debug for Regr {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        f.debug_struct("regr")
            .field("name", &self.name())
            .field("signature", &self.signature)
            .finish()
    }
}

impl Regr {
    pub fn new(regr_type: RegrType, func_name: &'static str) -> Self {
        Self {
            signature: Signature::uniform(2, NUMERICS.to_vec(), Volatility::Immutable),
            regr_type,
            func_name,
        }
    }
}

/*
#[derive(Debug)]
pub struct Regr {
    name: String,
    regr_type: RegrType,
    expr_y: Arc<dyn PhysicalExpr>,
    expr_x: Arc<dyn PhysicalExpr>,
}

impl Regr {
    pub fn get_regr_type(&self) -> RegrType {
        self.regr_type.clone()
    }
}
*/

#[derive(Debug, Clone)]
#[allow(clippy::upper_case_acronyms)]
pub enum RegrType {
    /// Variant for `regr_slope` aggregate expression
    /// Returns the slope of the linear regression line for non-null pairs in aggregate columns.
    /// Given input column Y and X: `regr_slope(Y, X)` returns the slope (k in Y = k*X + b) using minimal
    /// RSS (Residual Sum of Squares) fitting.
    Slope,
    /// Variant for `regr_intercept` aggregate expression
    /// Returns the intercept of the linear regression line for non-null pairs in aggregate columns.
    /// Given input column Y and X: `regr_intercept(Y, X)` returns the intercept (b in Y = k*X + b) using minimal
    /// RSS fitting.
    Intercept,
    /// Variant for `regr_count` aggregate expression
    /// Returns the number of input rows for which both expressions are not null.
    /// Given input column Y and X: `regr_count(Y, X)` returns the count of non-null pairs.
    Count,
    /// Variant for `regr_r2` aggregate expression
    /// Returns the coefficient of determination (R-squared value) of the linear regression line for non-null pairs in aggregate columns.
    /// The R-squared value represents the proportion of variance in Y that is predictable from X.
    R2,
    /// Variant for `regr_avgx` aggregate expression
    /// Returns the average of the independent variable for non-null pairs in aggregate columns.
    /// Given input column X: `regr_avgx(Y, X)` returns the average of X values.
    AvgX,
    /// Variant for `regr_avgy` aggregate expression
    /// Returns the average of the dependent variable for non-null pairs in aggregate columns.
    /// Given input column Y: `regr_avgy(Y, X)` returns the average of Y values.
    AvgY,
    /// Variant for `regr_sxx` aggregate expression
    /// Returns the sum of squares of the independent variable for non-null pairs in aggregate columns.
    /// Given input column X: `regr_sxx(Y, X)` returns the sum of squares of deviations of X from its mean.
    SXX,
    /// Variant for `regr_syy` aggregate expression
    /// Returns the sum of squares of the dependent variable for non-null pairs in aggregate columns.
    /// Given input column Y: `regr_syy(Y, X)` returns the sum of squares of deviations of Y from its mean.
    SYY,
    /// Variant for `regr_sxy` aggregate expression
    /// Returns the sum of products of pairs of numbers for non-null pairs in aggregate columns.
    /// Given input column Y and X: `regr_sxy(Y, X)` returns the sum of products of the deviations of Y and X from their respective means.
    SXY,
}

impl AggregateUDFImpl for Regr {
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn name(&self) -> &str {
        self.func_name
    }

    fn signature(&self) -> &Signature {
        &self.signature
    }

    fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
        if !arg_types[0].is_numeric() {
            return plan_err!("Covariance requires numeric input types");
        }

        if matches!(self.regr_type, RegrType::Count) {
            Ok(DataType::UInt64)
        } else {
            Ok(DataType::Float64)
        }
    }

    fn accumulator(&self, _acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
        Ok(Box::new(RegrAccumulator::try_new(&self.regr_type)?))
    }

    fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<Field>> {
        Ok(vec![
            Field::new(
                format_state_name(args.name, "count"),
                DataType::UInt64,
                true,
            ),
            Field::new(
                format_state_name(args.name, "mean_x"),
                DataType::Float64,
                true,
            ),
            Field::new(
                format_state_name(args.name, "mean_y"),
                DataType::Float64,
                true,
            ),
            Field::new(
                format_state_name(args.name, "m2_x"),
                DataType::Float64,
                true,
            ),
            Field::new(
                format_state_name(args.name, "m2_y"),
                DataType::Float64,
                true,
            ),
            Field::new(
                format_state_name(args.name, "algo_const"),
                DataType::Float64,
                true,
            ),
        ])
    }
}

/*
impl PartialEq<dyn Any> for Regr {
    fn eq(&self, other: &dyn Any) -> bool {
        down_cast_any_ref(other)
            .downcast_ref::<Self>()
            .map(|x| {
                self.name == x.name
                    && self.expr_y.eq(&x.expr_y)
                    && self.expr_x.eq(&x.expr_x)
            })
            .unwrap_or(false)
    }
}
*/

/// `RegrAccumulator` is used to compute linear regression aggregate functions
/// by maintaining statistics needed to compute them in an online fashion.
///
/// This struct uses Welford's online algorithm for calculating variance and covariance:
/// <https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm>
///
/// Given the statistics, the following aggregate functions can be calculated:
///
/// - `regr_slope(y, x)`: Slope of the linear regression line, calculated as:
///   cov_pop(x, y) / var_pop(x).
///   It represents the expected change in Y for a one-unit change in X.
///
/// - `regr_intercept(y, x)`: Intercept of the linear regression line, calculated as:
///   mean_y - (regr_slope(y, x) * mean_x).
///   It represents the expected value of Y when X is 0.
///
/// - `regr_count(y, x)`: Count of the non-null(both x and y) input rows.
///
/// - `regr_r2(y, x)`: R-squared value (coefficient of determination), calculated as:
///   (cov_pop(x, y) ^ 2) / (var_pop(x) * var_pop(y)).
///   It provides a measure of how well the model's predictions match the observed data.
///
/// - `regr_avgx(y, x)`: Average of the independent variable X, calculated as: mean_x.
///
/// - `regr_avgy(y, x)`: Average of the dependent variable Y, calculated as: mean_y.
///
/// - `regr_sxx(y, x)`: Sum of squares of the independent variable X, calculated as:
///   m2_x.
///
/// - `regr_syy(y, x)`: Sum of squares of the dependent variable Y, calculated as:
///   m2_y.
///
/// - `regr_sxy(y, x)`: Sum of products of paired values, calculated as:
///   algo_const.
///
/// Here's how the statistics maintained in this struct are calculated:
/// - `cov_pop(x, y)`: algo_const / count.
/// - `var_pop(x)`: m2_x / count.
/// - `var_pop(y)`: m2_y / count.
#[derive(Debug)]
pub struct RegrAccumulator {
    count: u64,
    mean_x: f64,
    mean_y: f64,
    m2_x: f64,
    m2_y: f64,
    algo_const: f64,
    regr_type: RegrType,
}

impl RegrAccumulator {
    /// Creates a new `RegrAccumulator`
    pub fn try_new(regr_type: &RegrType) -> Result<Self> {
        Ok(Self {
            count: 0_u64,
            mean_x: 0_f64,
            mean_y: 0_f64,
            m2_x: 0_f64,
            m2_y: 0_f64,
            algo_const: 0_f64,
            regr_type: regr_type.clone(),
        })
    }
}

impl Accumulator for RegrAccumulator {
    fn state(&mut self) -> Result<Vec<ScalarValue>> {
        Ok(vec![
            ScalarValue::from(self.count),
            ScalarValue::from(self.mean_x),
            ScalarValue::from(self.mean_y),
            ScalarValue::from(self.m2_x),
            ScalarValue::from(self.m2_y),
            ScalarValue::from(self.algo_const),
        ])
    }

    fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
        // regr_slope(Y, X) calculates k in y = k*x + b
        let values_y = &cast(&values[0], &DataType::Float64)?;
        let values_x = &cast(&values[1], &DataType::Float64)?;

        let mut arr_y = downcast_value!(values_y, Float64Array).iter().flatten();
        let mut arr_x = downcast_value!(values_x, Float64Array).iter().flatten();

        for i in 0..values_y.len() {
            // skip either x or y is NULL
            let value_y = if values_y.is_valid(i) {
                arr_y.next()
            } else {
                None
            };
            let value_x = if values_x.is_valid(i) {
                arr_x.next()
            } else {
                None
            };
            if value_y.is_none() || value_x.is_none() {
                continue;
            }

            // Update states for regr_slope(y,x) [using cov_pop(x,y)/var_pop(x)]
            let value_y = unwrap_or_internal_err!(value_y);
            let value_x = unwrap_or_internal_err!(value_x);

            self.count += 1;
            let delta_x = value_x - self.mean_x;
            let delta_y = value_y - self.mean_y;
            self.mean_x += delta_x / self.count as f64;
            self.mean_y += delta_y / self.count as f64;
            let delta_x_2 = value_x - self.mean_x;
            let delta_y_2 = value_y - self.mean_y;
            self.m2_x += delta_x * delta_x_2;
            self.m2_y += delta_y * delta_y_2;
            self.algo_const += delta_x * (value_y - self.mean_y);
        }

        Ok(())
    }

    fn supports_retract_batch(&self) -> bool {
        true
    }

    fn retract_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
        let values_y = &cast(&values[0], &DataType::Float64)?;
        let values_x = &cast(&values[1], &DataType::Float64)?;

        let mut arr_y = downcast_value!(values_y, Float64Array).iter().flatten();
        let mut arr_x = downcast_value!(values_x, Float64Array).iter().flatten();

        for i in 0..values_y.len() {
            // skip either x or y is NULL
            let value_y = if values_y.is_valid(i) {
                arr_y.next()
            } else {
                None
            };
            let value_x = if values_x.is_valid(i) {
                arr_x.next()
            } else {
                None
            };
            if value_y.is_none() || value_x.is_none() {
                continue;
            }

            // Update states for regr_slope(y,x) [using cov_pop(x,y)/var_pop(x)]
            let value_y = unwrap_or_internal_err!(value_y);
            let value_x = unwrap_or_internal_err!(value_x);

            if self.count > 1 {
                self.count -= 1;
                let delta_x = value_x - self.mean_x;
                let delta_y = value_y - self.mean_y;
                self.mean_x -= delta_x / self.count as f64;
                self.mean_y -= delta_y / self.count as f64;
                let delta_x_2 = value_x - self.mean_x;
                let delta_y_2 = value_y - self.mean_y;
                self.m2_x -= delta_x * delta_x_2;
                self.m2_y -= delta_y * delta_y_2;
                self.algo_const -= delta_x * (value_y - self.mean_y);
            } else {
                self.count = 0;
                self.mean_x = 0.0;
                self.m2_x = 0.0;
                self.m2_y = 0.0;
                self.mean_y = 0.0;
                self.algo_const = 0.0;
            }
        }

        Ok(())
    }

    fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
        let count_arr = downcast_value!(states[0], UInt64Array);
        let mean_x_arr = downcast_value!(states[1], Float64Array);
        let mean_y_arr = downcast_value!(states[2], Float64Array);
        let m2_x_arr = downcast_value!(states[3], Float64Array);
        let m2_y_arr = downcast_value!(states[4], Float64Array);
        let algo_const_arr = downcast_value!(states[5], Float64Array);

        for i in 0..count_arr.len() {
            let count_b = count_arr.value(i);
            if count_b == 0_u64 {
                continue;
            }
            let (count_a, mean_x_a, mean_y_a, m2_x_a, m2_y_a, algo_const_a) = (
                self.count,
                self.mean_x,
                self.mean_y,
                self.m2_x,
                self.m2_y,
                self.algo_const,
            );
            let (count_b, mean_x_b, mean_y_b, m2_x_b, m2_y_b, algo_const_b) = (
                count_b,
                mean_x_arr.value(i),
                mean_y_arr.value(i),
                m2_x_arr.value(i),
                m2_y_arr.value(i),
                algo_const_arr.value(i),
            );

            // Assuming two different batches of input have calculated the states:
            // batch A of Y, X -> {count_a, mean_x_a, mean_y_a, m2_x_a, algo_const_a}
            // batch B of Y, X -> {count_b, mean_x_b, mean_y_b, m2_x_b, algo_const_b}
            // The merged states from A and B are {count_ab, mean_x_ab, mean_y_ab, m2_x_ab,
            // algo_const_ab}
            //
            // Reference for the algorithm to merge states:
            // https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm
            let count_ab = count_a + count_b;
            let (count_a, count_b) = (count_a as f64, count_b as f64);
            let d_x = mean_x_b - mean_x_a;
            let d_y = mean_y_b - mean_y_a;
            let mean_x_ab = mean_x_a + d_x * count_b / count_ab as f64;
            let mean_y_ab = mean_y_a + d_y * count_b / count_ab as f64;
            let m2_x_ab =
                m2_x_a + m2_x_b + d_x * d_x * count_a * count_b / count_ab as f64;
            let m2_y_ab =
                m2_y_a + m2_y_b + d_y * d_y * count_a * count_b / count_ab as f64;
            let algo_const_ab = algo_const_a
                + algo_const_b
                + d_x * d_y * count_a * count_b / count_ab as f64;

            self.count = count_ab;
            self.mean_x = mean_x_ab;
            self.mean_y = mean_y_ab;
            self.m2_x = m2_x_ab;
            self.m2_y = m2_y_ab;
            self.algo_const = algo_const_ab;
        }
        Ok(())
    }

    fn evaluate(&mut self) -> Result<ScalarValue> {
        let cov_pop_x_y = self.algo_const / self.count as f64;
        let var_pop_x = self.m2_x / self.count as f64;
        let var_pop_y = self.m2_y / self.count as f64;

        let nullif_or_stat = |cond: bool, stat: f64| {
            if cond {
                Ok(ScalarValue::Float64(None))
            } else {
                Ok(ScalarValue::Float64(Some(stat)))
            }
        };

        match self.regr_type {
            RegrType::Slope => {
                // Only 0/1 point or slope is infinite
                let nullif_cond = self.count <= 1 || var_pop_x == 0.0;
                nullif_or_stat(nullif_cond, cov_pop_x_y / var_pop_x)
            }
            RegrType::Intercept => {
                let slope = cov_pop_x_y / var_pop_x;
                // Only 0/1 point or slope is infinite
                let nullif_cond = self.count <= 1 || var_pop_x == 0.0;
                nullif_or_stat(nullif_cond, self.mean_y - slope * self.mean_x)
            }
            RegrType::Count => Ok(ScalarValue::UInt64(Some(self.count))),
            RegrType::R2 => {
                // Only 0/1 point or all x(or y) is the same
                let nullif_cond = self.count <= 1 || var_pop_x == 0.0 || var_pop_y == 0.0;
                nullif_or_stat(
                    nullif_cond,
                    (cov_pop_x_y * cov_pop_x_y) / (var_pop_x * var_pop_y),
                )
            }
            RegrType::AvgX => nullif_or_stat(self.count < 1, self.mean_x),
            RegrType::AvgY => nullif_or_stat(self.count < 1, self.mean_y),
            RegrType::SXX => nullif_or_stat(self.count < 1, self.m2_x),
            RegrType::SYY => nullif_or_stat(self.count < 1, self.m2_y),
            RegrType::SXY => nullif_or_stat(self.count < 1, self.algo_const),
        }
    }

    fn size(&self) -> usize {
        std::mem::size_of_val(self)
    }
}