datafusion_functions_aggregate/
hyperloglog.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! # HyperLogLog
//!
//! `hyperloglog` is a module that contains a modified version
//! of [redis's implementation](https://github.com/redis/redis/blob/4930d19e70c391750479951022e207e19111eb55/src/hyperloglog.c)
//! with some modification based on strong assumption of usage
//! within datafusion, so that function can
//! be efficiently implemented.
//!
//! Specifically, like Redis's version, this HLL structure uses
//! 2**14 = 16384 registers, which means the standard error is
//! 1.04/(16384**0.5) = 0.8125%. Unlike Redis, the register takes
//! up full [`u8`] size instead of a raw int* and thus saves some
//! tricky bit shifting techniques used in the original version.
//! This results in a memory usage increase from 12Kib to 16Kib.
//! Also only the dense version is adopted, so there's no automatic
//! conversion, largely to simplify the code.
//!
//! This module also borrows some code structure from [pdatastructs.rs](https://github.com/crepererum/pdatastructs.rs/blob/3997ed50f6b6871c9e53c4c5e0f48f431405fc63/src/hyperloglog.rs).

use ahash::RandomState;
use std::hash::Hash;
use std::marker::PhantomData;

/// The greater is P, the smaller the error.
const HLL_P: usize = 14_usize;
/// The number of bits of the hash value used determining the number of leading zeros
const HLL_Q: usize = 64_usize - HLL_P;
const NUM_REGISTERS: usize = 1_usize << HLL_P;
/// Mask to obtain index into the registers
const HLL_P_MASK: u64 = (NUM_REGISTERS as u64) - 1;

#[derive(Clone, Debug)]
pub(crate) struct HyperLogLog<T>
where
    T: Hash + ?Sized,
{
    registers: [u8; NUM_REGISTERS],
    phantom: PhantomData<T>,
}

/// Fixed seed for the hashing so that values are consistent across runs
///
/// Note that when we later move on to have serialized HLL register binaries
/// shared across cluster, this SEED will have to be consistent across all
/// parties otherwise we might have corruption. So ideally for later this seed
/// shall be part of the serialized form (or stay unchanged across versions).
const SEED: RandomState = RandomState::with_seeds(
    0x885f6cab121d01a3_u64,
    0x71e4379f2976ad8f_u64,
    0xbf30173dd28a8816_u64,
    0x0eaea5d736d733a4_u64,
);

impl<T> Default for HyperLogLog<T>
where
    T: Hash + ?Sized,
{
    fn default() -> Self {
        Self::new()
    }
}

impl<T> HyperLogLog<T>
where
    T: Hash + ?Sized,
{
    /// Creates a new, empty HyperLogLog.
    pub fn new() -> Self {
        let registers = [0; NUM_REGISTERS];
        Self::new_with_registers(registers)
    }

    /// Creates a HyperLogLog from already populated registers
    /// note that this method should not be invoked in untrusted environment
    /// because the internal structure of registers are not examined.
    pub(crate) fn new_with_registers(registers: [u8; NUM_REGISTERS]) -> Self {
        Self {
            registers,
            phantom: PhantomData,
        }
    }

    /// choice of hash function: ahash is already an dependency
    /// and it fits the requirements of being a 64bit hash with
    /// reasonable performance.
    #[inline]
    fn hash_value(&self, obj: &T) -> u64 {
        SEED.hash_one(obj)
    }

    /// Adds an element to the HyperLogLog.
    pub fn add(&mut self, obj: &T) {
        let hash = self.hash_value(obj);
        let index = (hash & HLL_P_MASK) as usize;
        let p = ((hash >> HLL_P) | (1_u64 << HLL_Q)).trailing_zeros() + 1;
        self.registers[index] = self.registers[index].max(p as u8);
    }

    /// Get the register histogram (each value in register index into
    /// the histogram; u32 is enough because we only have 2**14=16384 registers
    #[inline]
    fn get_histogram(&self) -> [u32; HLL_Q + 2] {
        let mut histogram = [0; HLL_Q + 2];
        // hopefully this can be unrolled
        for r in self.registers {
            histogram[r as usize] += 1;
        }
        histogram
    }

    /// Merge the other [`HyperLogLog`] into this one
    pub fn merge(&mut self, other: &HyperLogLog<T>) {
        assert!(
            self.registers.len() == other.registers.len(),
            "unexpected got unequal register size, expect {}, got {}",
            self.registers.len(),
            other.registers.len()
        );
        for i in 0..self.registers.len() {
            self.registers[i] = self.registers[i].max(other.registers[i]);
        }
    }

    /// Guess the number of unique elements seen by the HyperLogLog.
    pub fn count(&self) -> usize {
        let histogram = self.get_histogram();
        let m = NUM_REGISTERS as f64;
        let mut z = m * hll_tau((m - histogram[HLL_Q + 1] as f64) / m);
        for i in histogram[1..=HLL_Q].iter().rev() {
            z += *i as f64;
            z *= 0.5;
        }
        z += m * hll_sigma(histogram[0] as f64 / m);
        (0.5 / 2_f64.ln() * m * m / z).round() as usize
    }
}

/// Helper function sigma as defined in
/// "New cardinality estimation algorithms for HyperLogLog sketches"
/// Otmar Ertl, arXiv:1702.01284
#[inline]
fn hll_sigma(x: f64) -> f64 {
    if x == 1. {
        f64::INFINITY
    } else {
        let mut y = 1.0;
        let mut z = x;
        let mut x = x;
        loop {
            x *= x;
            let z_prime = z;
            z += x * y;
            y += y;
            if z_prime == z {
                break;
            }
        }
        z
    }
}

/// Helper function tau as defined in
/// "New cardinality estimation algorithms for HyperLogLog sketches"
/// Otmar Ertl, arXiv:1702.01284
#[inline]
fn hll_tau(x: f64) -> f64 {
    if x == 0.0 || x == 1.0 {
        0.0
    } else {
        let mut y = 1.0;
        let mut z = 1.0 - x;
        let mut x = x;
        loop {
            x = x.sqrt();
            let z_prime = z;
            y *= 0.5;
            z -= (1.0 - x).powi(2) * y;
            if z_prime == z {
                break;
            }
        }
        z / 3.0
    }
}

impl<T> AsRef<[u8]> for HyperLogLog<T>
where
    T: Hash + ?Sized,
{
    fn as_ref(&self) -> &[u8] {
        &self.registers
    }
}

impl<T> Extend<T> for HyperLogLog<T>
where
    T: Hash,
{
    fn extend<S: IntoIterator<Item = T>>(&mut self, iter: S) {
        for elem in iter {
            self.add(&elem);
        }
    }
}

impl<'a, T> Extend<&'a T> for HyperLogLog<T>
where
    T: 'a + Hash + ?Sized,
{
    fn extend<S: IntoIterator<Item = &'a T>>(&mut self, iter: S) {
        for elem in iter {
            self.add(elem);
        }
    }
}

#[cfg(test)]
mod tests {
    use super::{HyperLogLog, NUM_REGISTERS};

    fn compare_with_delta(got: usize, expected: usize) {
        let expected = expected as f64;
        let diff = (got as f64) - expected;
        let diff = diff.abs() / expected;
        // times 6 because we want the tests to be stable
        // so we allow a rather large margin of error
        // this is adopted from redis's unit test version as well
        let margin = 1.04 / ((NUM_REGISTERS as f64).sqrt()) * 6.0;
        assert!(
            diff <= margin,
            "{} is not near {} percent of {} which is ({}, {})",
            got,
            margin,
            expected,
            expected * (1.0 - margin),
            expected * (1.0 + margin)
        );
    }

    macro_rules! sized_number_test {
        ($SIZE: expr, $T: tt) => {{
            let mut hll = HyperLogLog::<$T>::new();
            for i in 0..$SIZE {
                hll.add(&i);
            }
            compare_with_delta(hll.count(), $SIZE);
        }};
    }

    macro_rules! typed_large_number_test {
        ($SIZE: expr) => {{
            sized_number_test!($SIZE, u64);
            sized_number_test!($SIZE, u128);
            sized_number_test!($SIZE, i64);
            sized_number_test!($SIZE, i128);
        }};
    }

    macro_rules! typed_number_test {
        ($SIZE: expr) => {{
            sized_number_test!($SIZE, u16);
            sized_number_test!($SIZE, u32);
            sized_number_test!($SIZE, i16);
            sized_number_test!($SIZE, i32);
            typed_large_number_test!($SIZE);
        }};
    }

    #[test]
    fn test_empty() {
        let hll = HyperLogLog::<u64>::new();
        assert_eq!(hll.count(), 0);
    }

    #[test]
    fn test_one() {
        let mut hll = HyperLogLog::<u64>::new();
        hll.add(&1);
        assert_eq!(hll.count(), 1);
    }

    #[test]
    fn test_number_100() {
        typed_number_test!(100);
    }

    #[test]
    fn test_number_1k() {
        typed_number_test!(1_000);
    }

    #[test]
    fn test_number_10k() {
        typed_number_test!(10_000);
    }

    #[test]
    fn test_number_100k() {
        typed_large_number_test!(100_000);
    }

    #[test]
    fn test_number_1m() {
        typed_large_number_test!(1_000_000);
    }

    #[test]
    fn test_u8() {
        let mut hll = HyperLogLog::<[u8]>::new();
        for i in 0..1000 {
            let s = i.to_string();
            let b = s.as_bytes();
            hll.add(b);
        }
        compare_with_delta(hll.count(), 1000);
    }

    #[test]
    fn test_string() {
        let mut hll = HyperLogLog::<String>::new();
        hll.extend((0..1000).map(|i| i.to_string()));
        compare_with_delta(hll.count(), 1000);
    }

    #[test]
    fn test_empty_merge() {
        let mut hll = HyperLogLog::<u64>::new();
        hll.merge(&HyperLogLog::<u64>::new());
        assert_eq!(hll.count(), 0);
    }

    #[test]
    fn test_merge_overlapped() {
        let mut hll = HyperLogLog::<String>::new();
        hll.extend((0..1000).map(|i| i.to_string()));

        let mut other = HyperLogLog::<String>::new();
        other.extend((0..1000).map(|i| i.to_string()));

        hll.merge(&other);
        compare_with_delta(hll.count(), 1000);
    }

    #[test]
    fn test_repetition() {
        let mut hll = HyperLogLog::<u32>::new();
        for i in 0..1_000_000 {
            hll.add(&(i % 1000));
        }
        compare_with_delta(hll.count(), 1000);
    }
}