datafusion_functions_aggregate/
lib.rs#![deny(clippy::clone_on_ref_ptr)]
#[macro_use]
pub mod macros;
pub mod approx_distinct;
pub mod array_agg;
pub mod correlation;
pub mod count;
pub mod covariance;
pub mod first_last;
pub mod hyperloglog;
pub mod median;
pub mod min_max;
pub mod regr;
pub mod stddev;
pub mod sum;
pub mod variance;
pub mod approx_median;
pub mod approx_percentile_cont;
pub mod approx_percentile_cont_with_weight;
pub mod average;
pub mod bit_and_or_xor;
pub mod bool_and_or;
pub mod grouping;
pub mod nth_value;
pub mod string_agg;
use crate::approx_percentile_cont::approx_percentile_cont_udaf;
use crate::approx_percentile_cont_with_weight::approx_percentile_cont_with_weight_udaf;
use datafusion_common::Result;
use datafusion_execution::FunctionRegistry;
use datafusion_expr::AggregateUDF;
use log::debug;
use std::sync::Arc;
pub mod expr_fn {
pub use super::approx_distinct::approx_distinct;
pub use super::approx_median::approx_median;
pub use super::approx_percentile_cont::approx_percentile_cont;
pub use super::approx_percentile_cont_with_weight::approx_percentile_cont_with_weight;
pub use super::array_agg::array_agg;
pub use super::average::avg;
pub use super::bit_and_or_xor::bit_and;
pub use super::bit_and_or_xor::bit_or;
pub use super::bit_and_or_xor::bit_xor;
pub use super::bool_and_or::bool_and;
pub use super::bool_and_or::bool_or;
pub use super::correlation::corr;
pub use super::count::count;
pub use super::count::count_distinct;
pub use super::covariance::covar_pop;
pub use super::covariance::covar_samp;
pub use super::first_last::first_value;
pub use super::first_last::last_value;
pub use super::grouping::grouping;
pub use super::median::median;
pub use super::min_max::max;
pub use super::min_max::min;
pub use super::nth_value::nth_value;
pub use super::regr::regr_avgx;
pub use super::regr::regr_avgy;
pub use super::regr::regr_count;
pub use super::regr::regr_intercept;
pub use super::regr::regr_r2;
pub use super::regr::regr_slope;
pub use super::regr::regr_sxx;
pub use super::regr::regr_sxy;
pub use super::regr::regr_syy;
pub use super::stddev::stddev;
pub use super::stddev::stddev_pop;
pub use super::sum::sum;
pub use super::variance::var_pop;
pub use super::variance::var_sample;
}
pub fn all_default_aggregate_functions() -> Vec<Arc<AggregateUDF>> {
vec![
array_agg::array_agg_udaf(),
first_last::first_value_udaf(),
first_last::last_value_udaf(),
covariance::covar_samp_udaf(),
covariance::covar_pop_udaf(),
correlation::corr_udaf(),
sum::sum_udaf(),
min_max::max_udaf(),
min_max::min_udaf(),
median::median_udaf(),
count::count_udaf(),
regr::regr_slope_udaf(),
regr::regr_intercept_udaf(),
regr::regr_count_udaf(),
regr::regr_r2_udaf(),
regr::regr_avgx_udaf(),
regr::regr_avgy_udaf(),
regr::regr_sxx_udaf(),
regr::regr_syy_udaf(),
regr::regr_sxy_udaf(),
variance::var_samp_udaf(),
variance::var_pop_udaf(),
stddev::stddev_udaf(),
stddev::stddev_pop_udaf(),
approx_median::approx_median_udaf(),
approx_distinct::approx_distinct_udaf(),
approx_percentile_cont_udaf(),
approx_percentile_cont_with_weight_udaf(),
string_agg::string_agg_udaf(),
bit_and_or_xor::bit_and_udaf(),
bit_and_or_xor::bit_or_udaf(),
bit_and_or_xor::bit_xor_udaf(),
bool_and_or::bool_and_udaf(),
bool_and_or::bool_or_udaf(),
average::avg_udaf(),
grouping::grouping_udaf(),
nth_value::nth_value_udaf(),
]
}
pub fn register_all(registry: &mut dyn FunctionRegistry) -> Result<()> {
let functions: Vec<Arc<AggregateUDF>> = all_default_aggregate_functions();
functions.into_iter().try_for_each(|udf| {
let existing_udaf = registry.register_udaf(udf)?;
if let Some(existing_udaf) = existing_udaf {
debug!("Overwrite existing UDAF: {}", existing_udaf.name());
}
Ok(()) as Result<()>
})?;
Ok(())
}
#[cfg(test)]
mod tests {
use crate::all_default_aggregate_functions;
use datafusion_common::Result;
use std::collections::HashSet;
#[test]
fn test_no_duplicate_name() -> Result<()> {
let mut names = HashSet::new();
let migrated_functions = ["array_agg", "count", "max", "min"];
for func in all_default_aggregate_functions() {
if migrated_functions.contains(&func.name().to_lowercase().as_str()) {
continue;
}
assert!(
names.insert(func.name().to_string().to_lowercase()),
"duplicate function name: {}",
func.name()
);
for alias in func.aliases() {
assert!(
names.insert(alias.to_string().to_lowercase()),
"duplicate function name: {}",
alias
);
}
}
Ok(())
}
}