datafusion_functions_aggregate/
array_agg.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! `ARRAY_AGG` aggregate implementation: [`ArrayAgg`]

use arrow::array::{new_empty_array, Array, ArrayRef, AsArray, StructArray};
use arrow::datatypes::DataType;

use arrow_schema::{Field, Fields};
use datafusion_common::cast::as_list_array;
use datafusion_common::utils::{array_into_list_array_nullable, get_row_at_idx};
use datafusion_common::{exec_err, ScalarValue};
use datafusion_common::{internal_err, Result};
use datafusion_expr::aggregate_doc_sections::DOC_SECTION_GENERAL;
use datafusion_expr::function::{AccumulatorArgs, StateFieldsArgs};
use datafusion_expr::utils::format_state_name;
use datafusion_expr::{Accumulator, Signature, Volatility};
use datafusion_expr::{AggregateUDFImpl, Documentation};
use datafusion_functions_aggregate_common::merge_arrays::merge_ordered_arrays;
use datafusion_functions_aggregate_common::utils::ordering_fields;
use datafusion_physical_expr_common::sort_expr::{LexOrdering, PhysicalSortExpr};
use std::collections::{HashSet, VecDeque};
use std::mem::{size_of, size_of_val};
use std::sync::{Arc, OnceLock};

make_udaf_expr_and_func!(
    ArrayAgg,
    array_agg,
    expression,
    "input values, including nulls, concatenated into an array",
    array_agg_udaf
);

#[derive(Debug)]
/// ARRAY_AGG aggregate expression
pub struct ArrayAgg {
    signature: Signature,
}

impl Default for ArrayAgg {
    fn default() -> Self {
        Self {
            signature: Signature::any(1, Volatility::Immutable),
        }
    }
}

impl AggregateUDFImpl for ArrayAgg {
    fn as_any(&self) -> &dyn std::any::Any {
        self
    }

    fn name(&self) -> &str {
        "array_agg"
    }

    fn aliases(&self) -> &[String] {
        &[]
    }

    fn signature(&self) -> &Signature {
        &self.signature
    }

    fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
        Ok(DataType::List(Arc::new(Field::new(
            "item",
            arg_types[0].clone(),
            true,
        ))))
    }

    fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<Field>> {
        if args.is_distinct {
            return Ok(vec![Field::new_list(
                format_state_name(args.name, "distinct_array_agg"),
                // See COMMENTS.md to understand why nullable is set to true
                Field::new("item", args.input_types[0].clone(), true),
                true,
            )]);
        }

        let mut fields = vec![Field::new_list(
            format_state_name(args.name, "array_agg"),
            // See COMMENTS.md to understand why nullable is set to true
            Field::new("item", args.input_types[0].clone(), true),
            true,
        )];

        if args.ordering_fields.is_empty() {
            return Ok(fields);
        }

        let orderings = args.ordering_fields.to_vec();
        fields.push(Field::new_list(
            format_state_name(args.name, "array_agg_orderings"),
            Field::new("item", DataType::Struct(Fields::from(orderings)), true),
            false,
        ));

        Ok(fields)
    }

    fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
        let data_type = acc_args.exprs[0].data_type(acc_args.schema)?;

        if acc_args.is_distinct {
            return Ok(Box::new(DistinctArrayAggAccumulator::try_new(&data_type)?));
        }

        if acc_args.ordering_req.is_empty() {
            return Ok(Box::new(ArrayAggAccumulator::try_new(&data_type)?));
        }

        let ordering_dtypes = acc_args
            .ordering_req
            .iter()
            .map(|e| e.expr.data_type(acc_args.schema))
            .collect::<Result<Vec<_>>>()?;

        OrderSensitiveArrayAggAccumulator::try_new(
            &data_type,
            &ordering_dtypes,
            LexOrdering::from_ref(acc_args.ordering_req),
            acc_args.is_reversed,
        )
        .map(|acc| Box::new(acc) as _)
    }

    fn reverse_expr(&self) -> datafusion_expr::ReversedUDAF {
        datafusion_expr::ReversedUDAF::Reversed(array_agg_udaf())
    }

    fn documentation(&self) -> Option<&Documentation> {
        Some(get_array_agg_doc())
    }
}

static DOCUMENTATION: OnceLock<Documentation> = OnceLock::new();

fn get_array_agg_doc() -> &'static Documentation {
    DOCUMENTATION.get_or_init(|| {
        Documentation::builder()
            .with_doc_section(DOC_SECTION_GENERAL)
            .with_description(
                "Returns an array created from the expression elements. If ordering is required, elements are inserted in the specified order.",
            )
            .with_syntax_example("array_agg(expression [ORDER BY expression])")
            .with_sql_example(r#"```sql
> SELECT array_agg(column_name ORDER BY other_column) FROM table_name;
+-----------------------------------------------+
| array_agg(column_name ORDER BY other_column)  |
+-----------------------------------------------+
| [element1, element2, element3]                |
+-----------------------------------------------+
```"#, 
            )
            .with_standard_argument("expression", None)
            .build()
            .unwrap()
    })
}

#[derive(Debug)]
pub struct ArrayAggAccumulator {
    values: Vec<ArrayRef>,
    datatype: DataType,
}

impl ArrayAggAccumulator {
    /// new array_agg accumulator based on given item data type
    pub fn try_new(datatype: &DataType) -> Result<Self> {
        Ok(Self {
            values: vec![],
            datatype: datatype.clone(),
        })
    }
}

impl Accumulator for ArrayAggAccumulator {
    fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
        // Append value like Int64Array(1,2,3)
        if values.is_empty() {
            return Ok(());
        }

        if values.len() != 1 {
            return internal_err!("expects single batch");
        }

        let val = Arc::clone(&values[0]);
        if val.len() > 0 {
            self.values.push(val);
        }
        Ok(())
    }

    fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
        // Append value like ListArray(Int64Array(1,2,3), Int64Array(4,5,6))
        if states.is_empty() {
            return Ok(());
        }

        if states.len() != 1 {
            return internal_err!("expects single state");
        }

        let list_arr = as_list_array(&states[0])?;
        for arr in list_arr.iter().flatten() {
            self.values.push(arr);
        }
        Ok(())
    }

    fn state(&mut self) -> Result<Vec<ScalarValue>> {
        Ok(vec![self.evaluate()?])
    }

    fn evaluate(&mut self) -> Result<ScalarValue> {
        // Transform Vec<ListArr> to ListArr
        let element_arrays: Vec<&dyn Array> =
            self.values.iter().map(|a| a.as_ref()).collect();

        if element_arrays.is_empty() {
            return Ok(ScalarValue::new_null_list(self.datatype.clone(), true, 1));
        }

        let concated_array = arrow::compute::concat(&element_arrays)?;
        let list_array = array_into_list_array_nullable(concated_array);

        Ok(ScalarValue::List(Arc::new(list_array)))
    }

    fn size(&self) -> usize {
        size_of_val(self)
            + (size_of::<ArrayRef>() * self.values.capacity())
            + self
                .values
                .iter()
                .map(|arr| arr.get_array_memory_size())
                .sum::<usize>()
            + self.datatype.size()
            - size_of_val(&self.datatype)
    }
}

#[derive(Debug)]
struct DistinctArrayAggAccumulator {
    values: HashSet<ScalarValue>,
    datatype: DataType,
}

impl DistinctArrayAggAccumulator {
    pub fn try_new(datatype: &DataType) -> Result<Self> {
        Ok(Self {
            values: HashSet::new(),
            datatype: datatype.clone(),
        })
    }
}

impl Accumulator for DistinctArrayAggAccumulator {
    fn state(&mut self) -> Result<Vec<ScalarValue>> {
        Ok(vec![self.evaluate()?])
    }

    fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
        if values.len() != 1 {
            return internal_err!("expects single batch");
        }

        let array = &values[0];

        for i in 0..array.len() {
            let scalar = ScalarValue::try_from_array(&array, i)?;
            self.values.insert(scalar);
        }

        Ok(())
    }

    fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
        if states.is_empty() {
            return Ok(());
        }

        if states.len() != 1 {
            return internal_err!("expects single state");
        }

        states[0]
            .as_list::<i32>()
            .iter()
            .flatten()
            .try_for_each(|val| self.update_batch(&[val]))
    }

    fn evaluate(&mut self) -> Result<ScalarValue> {
        let values: Vec<ScalarValue> = self.values.iter().cloned().collect();
        if values.is_empty() {
            return Ok(ScalarValue::new_null_list(self.datatype.clone(), true, 1));
        }
        let arr = ScalarValue::new_list(&values, &self.datatype, true);
        Ok(ScalarValue::List(arr))
    }

    fn size(&self) -> usize {
        size_of_val(self) + ScalarValue::size_of_hashset(&self.values)
            - size_of_val(&self.values)
            + self.datatype.size()
            - size_of_val(&self.datatype)
    }
}

/// Accumulator for a `ARRAY_AGG(... ORDER BY ..., ...)` aggregation. In a multi
/// partition setting, partial aggregations are computed for every partition,
/// and then their results are merged.
#[derive(Debug)]
pub(crate) struct OrderSensitiveArrayAggAccumulator {
    /// Stores entries in the `ARRAY_AGG` result.
    values: Vec<ScalarValue>,
    /// Stores values of ordering requirement expressions corresponding to each
    /// entry in `values`. This information is used when merging results from
    /// different partitions. For detailed information how merging is done, see
    /// [`merge_ordered_arrays`].
    ordering_values: Vec<Vec<ScalarValue>>,
    /// Stores datatypes of expressions inside values and ordering requirement
    /// expressions.
    datatypes: Vec<DataType>,
    /// Stores the ordering requirement of the `Accumulator`.
    ordering_req: LexOrdering,
    /// Whether the aggregation is running in reverse.
    reverse: bool,
}

impl OrderSensitiveArrayAggAccumulator {
    /// Create a new order-sensitive ARRAY_AGG accumulator based on the given
    /// item data type.
    pub fn try_new(
        datatype: &DataType,
        ordering_dtypes: &[DataType],
        ordering_req: LexOrdering,
        reverse: bool,
    ) -> Result<Self> {
        let mut datatypes = vec![datatype.clone()];
        datatypes.extend(ordering_dtypes.iter().cloned());
        Ok(Self {
            values: vec![],
            ordering_values: vec![],
            datatypes,
            ordering_req,
            reverse,
        })
    }
}

impl Accumulator for OrderSensitiveArrayAggAccumulator {
    fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
        if values.is_empty() {
            return Ok(());
        }

        let n_row = values[0].len();
        for index in 0..n_row {
            let row = get_row_at_idx(values, index)?;
            self.values.push(row[0].clone());
            self.ordering_values.push(row[1..].to_vec());
        }

        Ok(())
    }

    fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
        if states.is_empty() {
            return Ok(());
        }

        // First entry in the state is the aggregation result. Second entry
        // stores values received for ordering requirement columns for each
        // aggregation value inside `ARRAY_AGG` list. For each `StructArray`
        // inside `ARRAY_AGG` list, we will receive an `Array` that stores values
        // received from its ordering requirement expression. (This information
        // is necessary for during merging).
        let [array_agg_values, agg_orderings, ..] = &states else {
            return exec_err!("State should have two elements");
        };
        let Some(agg_orderings) = agg_orderings.as_list_opt::<i32>() else {
            return exec_err!("Expects to receive a list array");
        };

        // Stores ARRAY_AGG results coming from each partition
        let mut partition_values = vec![];
        // Stores ordering requirement expression results coming from each partition
        let mut partition_ordering_values = vec![];

        // Existing values should be merged also.
        partition_values.push(self.values.clone().into());
        partition_ordering_values.push(self.ordering_values.clone().into());

        // Convert array to Scalars to sort them easily. Convert back to array at evaluation.
        let array_agg_res = ScalarValue::convert_array_to_scalar_vec(array_agg_values)?;
        for v in array_agg_res.into_iter() {
            partition_values.push(v.into());
        }

        let orderings = ScalarValue::convert_array_to_scalar_vec(agg_orderings)?;

        for partition_ordering_rows in orderings.into_iter() {
            // Extract value from struct to ordering_rows for each group/partition
            let ordering_value = partition_ordering_rows.into_iter().map(|ordering_row| {
                    if let ScalarValue::Struct(s) = ordering_row {
                        let mut ordering_columns_per_row = vec![];

                        for column in s.columns() {
                            let sv = ScalarValue::try_from_array(column, 0)?;
                            ordering_columns_per_row.push(sv);
                        }

                        Ok(ordering_columns_per_row)
                    } else {
                        exec_err!(
                            "Expects to receive ScalarValue::Struct(Arc<StructArray>) but got:{:?}",
                            ordering_row.data_type()
                        )
                    }
                }).collect::<Result<VecDeque<_>>>()?;

            partition_ordering_values.push(ordering_value);
        }

        let sort_options = self
            .ordering_req
            .iter()
            .map(|sort_expr| sort_expr.options)
            .collect::<Vec<_>>();

        (self.values, self.ordering_values) = merge_ordered_arrays(
            &mut partition_values,
            &mut partition_ordering_values,
            &sort_options,
        )?;

        Ok(())
    }

    fn state(&mut self) -> Result<Vec<ScalarValue>> {
        let mut result = vec![self.evaluate()?];
        result.push(self.evaluate_orderings()?);

        Ok(result)
    }

    fn evaluate(&mut self) -> Result<ScalarValue> {
        if self.values.is_empty() {
            return Ok(ScalarValue::new_null_list(
                self.datatypes[0].clone(),
                true,
                1,
            ));
        }

        let values = self.values.clone();
        let array = if self.reverse {
            ScalarValue::new_list_from_iter(
                values.into_iter().rev(),
                &self.datatypes[0],
                true,
            )
        } else {
            ScalarValue::new_list_from_iter(values.into_iter(), &self.datatypes[0], true)
        };
        Ok(ScalarValue::List(array))
    }

    fn size(&self) -> usize {
        let mut total = size_of_val(self) + ScalarValue::size_of_vec(&self.values)
            - size_of_val(&self.values);

        // Add size of the `self.ordering_values`
        total += size_of::<Vec<ScalarValue>>() * self.ordering_values.capacity();
        for row in &self.ordering_values {
            total += ScalarValue::size_of_vec(row) - size_of_val(row);
        }

        // Add size of the `self.datatypes`
        total += size_of::<DataType>() * self.datatypes.capacity();
        for dtype in &self.datatypes {
            total += dtype.size() - size_of_val(dtype);
        }

        // Add size of the `self.ordering_req`
        total += size_of::<PhysicalSortExpr>() * self.ordering_req.capacity();
        // TODO: Calculate size of each `PhysicalSortExpr` more accurately.
        total
    }
}

impl OrderSensitiveArrayAggAccumulator {
    fn evaluate_orderings(&self) -> Result<ScalarValue> {
        let fields = ordering_fields(self.ordering_req.as_ref(), &self.datatypes[1..]);
        let num_columns = fields.len();
        let struct_field = Fields::from(fields.clone());

        let mut column_wise_ordering_values = vec![];
        for i in 0..num_columns {
            let column_values = self
                .ordering_values
                .iter()
                .map(|x| x[i].clone())
                .collect::<Vec<_>>();
            let array = if column_values.is_empty() {
                new_empty_array(fields[i].data_type())
            } else {
                ScalarValue::iter_to_array(column_values.into_iter())?
            };
            column_wise_ordering_values.push(array);
        }

        let ordering_array =
            StructArray::try_new(struct_field, column_wise_ordering_values, None)?;
        Ok(ScalarValue::List(Arc::new(array_into_list_array_nullable(
            Arc::new(ordering_array),
        ))))
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use std::collections::VecDeque;
    use std::sync::Arc;

    use arrow::array::Int64Array;
    use arrow_schema::SortOptions;

    use datafusion_common::utils::get_row_at_idx;
    use datafusion_common::{Result, ScalarValue};

    #[test]
    fn test_merge_asc() -> Result<()> {
        let lhs_arrays: Vec<ArrayRef> = vec![
            Arc::new(Int64Array::from(vec![0, 0, 1, 1, 2])),
            Arc::new(Int64Array::from(vec![0, 1, 2, 3, 4])),
        ];
        let n_row = lhs_arrays[0].len();
        let lhs_orderings = (0..n_row)
            .map(|idx| get_row_at_idx(&lhs_arrays, idx))
            .collect::<Result<VecDeque<_>>>()?;

        let rhs_arrays: Vec<ArrayRef> = vec![
            Arc::new(Int64Array::from(vec![0, 0, 1, 1, 2])),
            Arc::new(Int64Array::from(vec![0, 1, 2, 3, 4])),
        ];
        let n_row = rhs_arrays[0].len();
        let rhs_orderings = (0..n_row)
            .map(|idx| get_row_at_idx(&rhs_arrays, idx))
            .collect::<Result<VecDeque<_>>>()?;
        let sort_options = vec![
            SortOptions {
                descending: false,
                nulls_first: false,
            },
            SortOptions {
                descending: false,
                nulls_first: false,
            },
        ];

        let lhs_vals_arr = Arc::new(Int64Array::from(vec![0, 1, 2, 3, 4])) as ArrayRef;
        let lhs_vals = (0..lhs_vals_arr.len())
            .map(|idx| ScalarValue::try_from_array(&lhs_vals_arr, idx))
            .collect::<Result<VecDeque<_>>>()?;

        let rhs_vals_arr = Arc::new(Int64Array::from(vec![0, 1, 2, 3, 4])) as ArrayRef;
        let rhs_vals = (0..rhs_vals_arr.len())
            .map(|idx| ScalarValue::try_from_array(&rhs_vals_arr, idx))
            .collect::<Result<VecDeque<_>>>()?;
        let expected =
            Arc::new(Int64Array::from(vec![0, 0, 1, 1, 2, 2, 3, 3, 4, 4])) as ArrayRef;
        let expected_ts = vec![
            Arc::new(Int64Array::from(vec![0, 0, 0, 0, 1, 1, 1, 1, 2, 2])) as ArrayRef,
            Arc::new(Int64Array::from(vec![0, 0, 1, 1, 2, 2, 3, 3, 4, 4])) as ArrayRef,
        ];

        let (merged_vals, merged_ts) = merge_ordered_arrays(
            &mut [lhs_vals, rhs_vals],
            &mut [lhs_orderings, rhs_orderings],
            &sort_options,
        )?;
        let merged_vals = ScalarValue::iter_to_array(merged_vals.into_iter())?;
        let merged_ts = (0..merged_ts[0].len())
            .map(|col_idx| {
                ScalarValue::iter_to_array(
                    (0..merged_ts.len())
                        .map(|row_idx| merged_ts[row_idx][col_idx].clone()),
                )
            })
            .collect::<Result<Vec<_>>>()?;

        assert_eq!(&merged_vals, &expected);
        assert_eq!(&merged_ts, &expected_ts);

        Ok(())
    }

    #[test]
    fn test_merge_desc() -> Result<()> {
        let lhs_arrays: Vec<ArrayRef> = vec![
            Arc::new(Int64Array::from(vec![2, 1, 1, 0, 0])),
            Arc::new(Int64Array::from(vec![4, 3, 2, 1, 0])),
        ];
        let n_row = lhs_arrays[0].len();
        let lhs_orderings = (0..n_row)
            .map(|idx| get_row_at_idx(&lhs_arrays, idx))
            .collect::<Result<VecDeque<_>>>()?;

        let rhs_arrays: Vec<ArrayRef> = vec![
            Arc::new(Int64Array::from(vec![2, 1, 1, 0, 0])),
            Arc::new(Int64Array::from(vec![4, 3, 2, 1, 0])),
        ];
        let n_row = rhs_arrays[0].len();
        let rhs_orderings = (0..n_row)
            .map(|idx| get_row_at_idx(&rhs_arrays, idx))
            .collect::<Result<VecDeque<_>>>()?;
        let sort_options = vec![
            SortOptions {
                descending: true,
                nulls_first: false,
            },
            SortOptions {
                descending: true,
                nulls_first: false,
            },
        ];

        // Values (which will be merged) doesn't have to be ordered.
        let lhs_vals_arr = Arc::new(Int64Array::from(vec![0, 1, 2, 1, 2])) as ArrayRef;
        let lhs_vals = (0..lhs_vals_arr.len())
            .map(|idx| ScalarValue::try_from_array(&lhs_vals_arr, idx))
            .collect::<Result<VecDeque<_>>>()?;

        let rhs_vals_arr = Arc::new(Int64Array::from(vec![0, 1, 2, 1, 2])) as ArrayRef;
        let rhs_vals = (0..rhs_vals_arr.len())
            .map(|idx| ScalarValue::try_from_array(&rhs_vals_arr, idx))
            .collect::<Result<VecDeque<_>>>()?;
        let expected =
            Arc::new(Int64Array::from(vec![0, 0, 1, 1, 2, 2, 1, 1, 2, 2])) as ArrayRef;
        let expected_ts = vec![
            Arc::new(Int64Array::from(vec![2, 2, 1, 1, 1, 1, 0, 0, 0, 0])) as ArrayRef,
            Arc::new(Int64Array::from(vec![4, 4, 3, 3, 2, 2, 1, 1, 0, 0])) as ArrayRef,
        ];
        let (merged_vals, merged_ts) = merge_ordered_arrays(
            &mut [lhs_vals, rhs_vals],
            &mut [lhs_orderings, rhs_orderings],
            &sort_options,
        )?;
        let merged_vals = ScalarValue::iter_to_array(merged_vals.into_iter())?;
        let merged_ts = (0..merged_ts[0].len())
            .map(|col_idx| {
                ScalarValue::iter_to_array(
                    (0..merged_ts.len())
                        .map(|row_idx| merged_ts[row_idx][col_idx].clone()),
                )
            })
            .collect::<Result<Vec<_>>>()?;

        assert_eq!(&merged_vals, &expected);
        assert_eq!(&merged_ts, &expected_ts);
        Ok(())
    }
}