datafusion_functions_aggregate/
variance.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! [`VarianceSample`]: variance sample aggregations.
//! [`VariancePopulation`]: variance population aggregations.

use arrow::{
    array::{Array, ArrayRef, BooleanArray, Float64Array, UInt64Array},
    buffer::NullBuffer,
    compute::kernels::cast,
    datatypes::{DataType, Field},
};
use std::mem::{size_of, size_of_val};
use std::sync::OnceLock;
use std::{fmt::Debug, sync::Arc};

use datafusion_common::{
    downcast_value, not_impl_err, plan_err, DataFusionError, Result, ScalarValue,
};
use datafusion_expr::aggregate_doc_sections::DOC_SECTION_GENERAL;
use datafusion_expr::{
    function::{AccumulatorArgs, StateFieldsArgs},
    utils::format_state_name,
    Accumulator, AggregateUDFImpl, Documentation, GroupsAccumulator, Signature,
    Volatility,
};
use datafusion_functions_aggregate_common::{
    aggregate::groups_accumulator::accumulate::accumulate, stats::StatsType,
};

make_udaf_expr_and_func!(
    VarianceSample,
    var_sample,
    expression,
    "Computes the sample variance.",
    var_samp_udaf
);

make_udaf_expr_and_func!(
    VariancePopulation,
    var_pop,
    expression,
    "Computes the population variance.",
    var_pop_udaf
);

pub struct VarianceSample {
    signature: Signature,
    aliases: Vec<String>,
}

impl Debug for VarianceSample {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        f.debug_struct("VarianceSample")
            .field("name", &self.name())
            .field("signature", &self.signature)
            .finish()
    }
}

impl Default for VarianceSample {
    fn default() -> Self {
        Self::new()
    }
}

impl VarianceSample {
    pub fn new() -> Self {
        Self {
            aliases: vec![String::from("var_sample"), String::from("var_samp")],
            signature: Signature::coercible(
                vec![DataType::Float64],
                Volatility::Immutable,
            ),
        }
    }
}

impl AggregateUDFImpl for VarianceSample {
    fn as_any(&self) -> &dyn std::any::Any {
        self
    }

    fn name(&self) -> &str {
        "var"
    }

    fn signature(&self) -> &Signature {
        &self.signature
    }

    fn return_type(&self, _arg_types: &[DataType]) -> Result<DataType> {
        Ok(DataType::Float64)
    }

    fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<Field>> {
        let name = args.name;
        Ok(vec![
            Field::new(format_state_name(name, "count"), DataType::UInt64, true),
            Field::new(format_state_name(name, "mean"), DataType::Float64, true),
            Field::new(format_state_name(name, "m2"), DataType::Float64, true),
        ])
    }

    fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
        if acc_args.is_distinct {
            return not_impl_err!("VAR(DISTINCT) aggregations are not available");
        }

        Ok(Box::new(VarianceAccumulator::try_new(StatsType::Sample)?))
    }

    fn aliases(&self) -> &[String] {
        &self.aliases
    }

    fn groups_accumulator_supported(&self, acc_args: AccumulatorArgs) -> bool {
        !acc_args.is_distinct
    }

    fn create_groups_accumulator(
        &self,
        _args: AccumulatorArgs,
    ) -> Result<Box<dyn GroupsAccumulator>> {
        Ok(Box::new(VarianceGroupsAccumulator::new(StatsType::Sample)))
    }

    fn documentation(&self) -> Option<&Documentation> {
        Some(get_variance_sample_doc())
    }
}

static VARIANCE_SAMPLE_DOC: OnceLock<Documentation> = OnceLock::new();

fn get_variance_sample_doc() -> &'static Documentation {
    VARIANCE_SAMPLE_DOC.get_or_init(|| {
        Documentation::builder()
            .with_doc_section(DOC_SECTION_GENERAL)
            .with_description(
                "Returns the statistical sample variance of a set of numbers.",
            )
            .with_syntax_example("var(expression)")
            .with_standard_argument("expression", Some("Numeric"))
            .build()
            .unwrap()
    })
}

pub struct VariancePopulation {
    signature: Signature,
    aliases: Vec<String>,
}

impl Debug for VariancePopulation {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        f.debug_struct("VariancePopulation")
            .field("name", &self.name())
            .field("signature", &self.signature)
            .finish()
    }
}

impl Default for VariancePopulation {
    fn default() -> Self {
        Self::new()
    }
}

impl VariancePopulation {
    pub fn new() -> Self {
        Self {
            aliases: vec![String::from("var_population")],
            signature: Signature::numeric(1, Volatility::Immutable),
        }
    }
}

impl AggregateUDFImpl for VariancePopulation {
    fn as_any(&self) -> &dyn std::any::Any {
        self
    }

    fn name(&self) -> &str {
        "var_pop"
    }

    fn signature(&self) -> &Signature {
        &self.signature
    }

    fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
        if !arg_types[0].is_numeric() {
            return plan_err!("Variance requires numeric input types");
        }

        Ok(DataType::Float64)
    }

    fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<Field>> {
        let name = args.name;
        Ok(vec![
            Field::new(format_state_name(name, "count"), DataType::UInt64, true),
            Field::new(format_state_name(name, "mean"), DataType::Float64, true),
            Field::new(format_state_name(name, "m2"), DataType::Float64, true),
        ])
    }

    fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
        if acc_args.is_distinct {
            return not_impl_err!("VAR_POP(DISTINCT) aggregations are not available");
        }

        Ok(Box::new(VarianceAccumulator::try_new(
            StatsType::Population,
        )?))
    }

    fn aliases(&self) -> &[String] {
        &self.aliases
    }

    fn groups_accumulator_supported(&self, acc_args: AccumulatorArgs) -> bool {
        !acc_args.is_distinct
    }

    fn create_groups_accumulator(
        &self,
        _args: AccumulatorArgs,
    ) -> Result<Box<dyn GroupsAccumulator>> {
        Ok(Box::new(VarianceGroupsAccumulator::new(
            StatsType::Population,
        )))
    }
    fn documentation(&self) -> Option<&Documentation> {
        Some(get_variance_population_doc())
    }
}

static VARIANCE_POPULATION_DOC: OnceLock<Documentation> = OnceLock::new();

fn get_variance_population_doc() -> &'static Documentation {
    VARIANCE_POPULATION_DOC.get_or_init(|| {
        Documentation::builder()
            .with_doc_section(DOC_SECTION_GENERAL)
            .with_description(
                "Returns the statistical population variance of a set of numbers.",
            )
            .with_syntax_example("var_pop(expression)")
            .with_standard_argument("expression", Some("Numeric"))
            .build()
            .unwrap()
    })
}

/// An accumulator to compute variance
/// The algorithm used is an online implementation and numerically stable. It is based on this paper:
/// Welford, B. P. (1962). "Note on a method for calculating corrected sums of squares and products".
/// Technometrics. 4 (3): 419–420. doi:10.2307/1266577. JSTOR 1266577.
///
/// The algorithm has been analyzed here:
/// Ling, Robert F. (1974). "Comparison of Several Algorithms for Computing Sample Means and Variances".
/// Journal of the American Statistical Association. 69 (348): 859–866. doi:10.2307/2286154. JSTOR 2286154.

#[derive(Debug)]
pub struct VarianceAccumulator {
    m2: f64,
    mean: f64,
    count: u64,
    stats_type: StatsType,
}

impl VarianceAccumulator {
    /// Creates a new `VarianceAccumulator`
    pub fn try_new(s_type: StatsType) -> Result<Self> {
        Ok(Self {
            m2: 0_f64,
            mean: 0_f64,
            count: 0_u64,
            stats_type: s_type,
        })
    }

    pub fn get_count(&self) -> u64 {
        self.count
    }

    pub fn get_mean(&self) -> f64 {
        self.mean
    }

    pub fn get_m2(&self) -> f64 {
        self.m2
    }
}

#[inline]
fn merge(
    count: u64,
    mean: f64,
    m2: f64,
    count2: u64,
    mean2: f64,
    m22: f64,
) -> (u64, f64, f64) {
    let new_count = count + count2;
    let new_mean =
        mean * count as f64 / new_count as f64 + mean2 * count2 as f64 / new_count as f64;
    let delta = mean - mean2;
    let new_m2 =
        m2 + m22 + delta * delta * count as f64 * count2 as f64 / new_count as f64;

    (new_count, new_mean, new_m2)
}

#[inline]
fn update(count: u64, mean: f64, m2: f64, value: f64) -> (u64, f64, f64) {
    let new_count = count + 1;
    let delta1 = value - mean;
    let new_mean = delta1 / new_count as f64 + mean;
    let delta2 = value - new_mean;
    let new_m2 = m2 + delta1 * delta2;

    (new_count, new_mean, new_m2)
}

impl Accumulator for VarianceAccumulator {
    fn state(&mut self) -> Result<Vec<ScalarValue>> {
        Ok(vec![
            ScalarValue::from(self.count),
            ScalarValue::from(self.mean),
            ScalarValue::from(self.m2),
        ])
    }

    fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
        let values = &cast(&values[0], &DataType::Float64)?;
        let arr = downcast_value!(values, Float64Array).iter().flatten();

        for value in arr {
            (self.count, self.mean, self.m2) =
                update(self.count, self.mean, self.m2, value)
        }

        Ok(())
    }

    fn retract_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
        let values = &cast(&values[0], &DataType::Float64)?;
        let arr = downcast_value!(values, Float64Array).iter().flatten();

        for value in arr {
            let new_count = self.count - 1;
            let delta1 = self.mean - value;
            let new_mean = delta1 / new_count as f64 + self.mean;
            let delta2 = new_mean - value;
            let new_m2 = self.m2 - delta1 * delta2;

            self.count -= 1;
            self.mean = new_mean;
            self.m2 = new_m2;
        }

        Ok(())
    }

    fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
        let counts = downcast_value!(states[0], UInt64Array);
        let means = downcast_value!(states[1], Float64Array);
        let m2s = downcast_value!(states[2], Float64Array);

        for i in 0..counts.len() {
            let c = counts.value(i);
            if c == 0_u64 {
                continue;
            }
            (self.count, self.mean, self.m2) = merge(
                self.count,
                self.mean,
                self.m2,
                c,
                means.value(i),
                m2s.value(i),
            )
        }
        Ok(())
    }

    fn evaluate(&mut self) -> Result<ScalarValue> {
        let count = match self.stats_type {
            StatsType::Population => self.count,
            StatsType::Sample => {
                if self.count > 0 {
                    self.count - 1
                } else {
                    self.count
                }
            }
        };

        Ok(ScalarValue::Float64(match self.count {
            0 => None,
            1 => {
                if let StatsType::Population = self.stats_type {
                    Some(0.0)
                } else {
                    None
                }
            }
            _ => Some(self.m2 / count as f64),
        }))
    }

    fn size(&self) -> usize {
        size_of_val(self)
    }

    fn supports_retract_batch(&self) -> bool {
        true
    }
}

#[derive(Debug)]
pub struct VarianceGroupsAccumulator {
    m2s: Vec<f64>,
    means: Vec<f64>,
    counts: Vec<u64>,
    stats_type: StatsType,
}

impl VarianceGroupsAccumulator {
    pub fn new(s_type: StatsType) -> Self {
        Self {
            m2s: Vec::new(),
            means: Vec::new(),
            counts: Vec::new(),
            stats_type: s_type,
        }
    }

    fn resize(&mut self, total_num_groups: usize) {
        self.m2s.resize(total_num_groups, 0.0);
        self.means.resize(total_num_groups, 0.0);
        self.counts.resize(total_num_groups, 0);
    }

    fn merge<F>(
        group_indices: &[usize],
        counts: &UInt64Array,
        means: &Float64Array,
        m2s: &Float64Array,
        opt_filter: Option<&BooleanArray>,
        mut value_fn: F,
    ) where
        F: FnMut(usize, u64, f64, f64) + Send,
    {
        assert_eq!(counts.null_count(), 0);
        assert_eq!(means.null_count(), 0);
        assert_eq!(m2s.null_count(), 0);

        match opt_filter {
            None => {
                group_indices
                    .iter()
                    .zip(counts.values().iter())
                    .zip(means.values().iter())
                    .zip(m2s.values().iter())
                    .for_each(|(((&group_index, &count), &mean), &m2)| {
                        value_fn(group_index, count, mean, m2);
                    });
            }
            Some(filter) => {
                group_indices
                    .iter()
                    .zip(counts.values().iter())
                    .zip(means.values().iter())
                    .zip(m2s.values().iter())
                    .zip(filter.iter())
                    .for_each(
                        |((((&group_index, &count), &mean), &m2), filter_value)| {
                            if let Some(true) = filter_value {
                                value_fn(group_index, count, mean, m2);
                            }
                        },
                    );
            }
        }
    }

    pub fn variance(
        &mut self,
        emit_to: datafusion_expr::EmitTo,
    ) -> (Vec<f64>, NullBuffer) {
        let mut counts = emit_to.take_needed(&mut self.counts);
        // means are only needed for updating m2s and are not needed for the final result.
        // But we still need to take them to ensure the internal state is consistent.
        let _ = emit_to.take_needed(&mut self.means);
        let m2s = emit_to.take_needed(&mut self.m2s);

        if let StatsType::Sample = self.stats_type {
            counts.iter_mut().for_each(|count| {
                *count = count.saturating_sub(1);
            });
        }
        let nulls = NullBuffer::from_iter(counts.iter().map(|&count| count != 0));
        let variance = m2s
            .iter()
            .zip(counts)
            .map(|(m2, count)| m2 / count as f64)
            .collect();
        (variance, nulls)
    }
}

impl GroupsAccumulator for VarianceGroupsAccumulator {
    fn update_batch(
        &mut self,
        values: &[ArrayRef],
        group_indices: &[usize],
        opt_filter: Option<&BooleanArray>,
        total_num_groups: usize,
    ) -> Result<()> {
        assert_eq!(values.len(), 1, "single argument to update_batch");
        let values = &cast(&values[0], &DataType::Float64)?;
        let values = downcast_value!(values, Float64Array);

        self.resize(total_num_groups);
        accumulate(group_indices, values, opt_filter, |group_index, value| {
            let (new_count, new_mean, new_m2) = update(
                self.counts[group_index],
                self.means[group_index],
                self.m2s[group_index],
                value,
            );
            self.counts[group_index] = new_count;
            self.means[group_index] = new_mean;
            self.m2s[group_index] = new_m2;
        });
        Ok(())
    }

    fn merge_batch(
        &mut self,
        values: &[ArrayRef],
        group_indices: &[usize],
        opt_filter: Option<&BooleanArray>,
        total_num_groups: usize,
    ) -> Result<()> {
        assert_eq!(values.len(), 3, "two arguments to merge_batch");
        // first batch is counts, second is partial means, third is partial m2s
        let partial_counts = downcast_value!(values[0], UInt64Array);
        let partial_means = downcast_value!(values[1], Float64Array);
        let partial_m2s = downcast_value!(values[2], Float64Array);

        self.resize(total_num_groups);
        Self::merge(
            group_indices,
            partial_counts,
            partial_means,
            partial_m2s,
            opt_filter,
            |group_index, partial_count, partial_mean, partial_m2| {
                let (new_count, new_mean, new_m2) = merge(
                    self.counts[group_index],
                    self.means[group_index],
                    self.m2s[group_index],
                    partial_count,
                    partial_mean,
                    partial_m2,
                );
                self.counts[group_index] = new_count;
                self.means[group_index] = new_mean;
                self.m2s[group_index] = new_m2;
            },
        );
        Ok(())
    }

    fn evaluate(&mut self, emit_to: datafusion_expr::EmitTo) -> Result<ArrayRef> {
        let (variances, nulls) = self.variance(emit_to);
        Ok(Arc::new(Float64Array::new(variances.into(), Some(nulls))))
    }

    fn state(&mut self, emit_to: datafusion_expr::EmitTo) -> Result<Vec<ArrayRef>> {
        let counts = emit_to.take_needed(&mut self.counts);
        let means = emit_to.take_needed(&mut self.means);
        let m2s = emit_to.take_needed(&mut self.m2s);

        Ok(vec![
            Arc::new(UInt64Array::new(counts.into(), None)),
            Arc::new(Float64Array::new(means.into(), None)),
            Arc::new(Float64Array::new(m2s.into(), None)),
        ])
    }

    fn size(&self) -> usize {
        self.m2s.capacity() * size_of::<f64>()
            + self.means.capacity() * size_of::<f64>()
            + self.counts.capacity() * size_of::<u64>()
    }
}