datafusion_functions_aggregate/
approx_distinct.rsuse crate::hyperloglog::HyperLogLog;
use arrow::array::BinaryArray;
use arrow::array::{
GenericBinaryArray, GenericStringArray, OffsetSizeTrait, PrimitiveArray,
};
use arrow::datatypes::{
ArrowPrimitiveType, Int16Type, Int32Type, Int64Type, Int8Type, UInt16Type,
UInt32Type, UInt64Type, UInt8Type,
};
use arrow::{array::ArrayRef, datatypes::DataType, datatypes::Field};
use datafusion_common::ScalarValue;
use datafusion_common::{
downcast_value, internal_err, not_impl_err, DataFusionError, Result,
};
use datafusion_expr::aggregate_doc_sections::DOC_SECTION_APPROXIMATE;
use datafusion_expr::function::{AccumulatorArgs, StateFieldsArgs};
use datafusion_expr::utils::format_state_name;
use datafusion_expr::{
Accumulator, AggregateUDFImpl, Documentation, Signature, Volatility,
};
use std::any::Any;
use std::fmt::{Debug, Formatter};
use std::hash::Hash;
use std::marker::PhantomData;
use std::sync::OnceLock;
make_udaf_expr_and_func!(
ApproxDistinct,
approx_distinct,
expression,
"approximate number of distinct input values",
approx_distinct_udaf
);
impl<T: Hash> From<&HyperLogLog<T>> for ScalarValue {
fn from(v: &HyperLogLog<T>) -> ScalarValue {
let values = v.as_ref().to_vec();
ScalarValue::Binary(Some(values))
}
}
impl<T: Hash> TryFrom<&[u8]> for HyperLogLog<T> {
type Error = DataFusionError;
fn try_from(v: &[u8]) -> Result<HyperLogLog<T>> {
let arr: [u8; 16384] = v.try_into().map_err(|_| {
DataFusionError::Internal(
"Impossibly got invalid binary array from states".into(),
)
})?;
Ok(HyperLogLog::<T>::new_with_registers(arr))
}
}
impl<T: Hash> TryFrom<&ScalarValue> for HyperLogLog<T> {
type Error = DataFusionError;
fn try_from(v: &ScalarValue) -> Result<HyperLogLog<T>> {
if let ScalarValue::Binary(Some(slice)) = v {
slice.as_slice().try_into()
} else {
internal_err!(
"Impossibly got invalid scalar value while converting to HyperLogLog"
)
}
}
}
#[derive(Debug)]
struct NumericHLLAccumulator<T>
where
T: ArrowPrimitiveType,
T::Native: Hash,
{
hll: HyperLogLog<T::Native>,
}
impl<T> NumericHLLAccumulator<T>
where
T: ArrowPrimitiveType,
T::Native: Hash,
{
pub fn new() -> Self {
Self {
hll: HyperLogLog::new(),
}
}
}
#[derive(Debug)]
struct StringHLLAccumulator<T>
where
T: OffsetSizeTrait,
{
hll: HyperLogLog<String>,
phantom_data: PhantomData<T>,
}
impl<T> StringHLLAccumulator<T>
where
T: OffsetSizeTrait,
{
pub fn new() -> Self {
Self {
hll: HyperLogLog::new(),
phantom_data: PhantomData,
}
}
}
#[derive(Debug)]
struct BinaryHLLAccumulator<T>
where
T: OffsetSizeTrait,
{
hll: HyperLogLog<Vec<u8>>,
phantom_data: PhantomData<T>,
}
impl<T> BinaryHLLAccumulator<T>
where
T: OffsetSizeTrait,
{
pub fn new() -> Self {
Self {
hll: HyperLogLog::new(),
phantom_data: PhantomData,
}
}
}
macro_rules! default_accumulator_impl {
() => {
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
assert_eq!(1, states.len(), "expect only 1 element in the states");
let binary_array = downcast_value!(states[0], BinaryArray);
for v in binary_array.iter() {
let v = v.ok_or_else(|| {
DataFusionError::Internal(
"Impossibly got empty binary array from states".into(),
)
})?;
let other = v.try_into()?;
self.hll.merge(&other);
}
Ok(())
}
fn state(&mut self) -> Result<Vec<ScalarValue>> {
let value = ScalarValue::from(&self.hll);
Ok(vec![value])
}
fn evaluate(&mut self) -> Result<ScalarValue> {
Ok(ScalarValue::UInt64(Some(self.hll.count() as u64)))
}
fn size(&self) -> usize {
std::mem::size_of_val(self)
}
};
}
impl<T> Accumulator for BinaryHLLAccumulator<T>
where
T: OffsetSizeTrait,
{
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
let array: &GenericBinaryArray<T> =
downcast_value!(values[0], GenericBinaryArray, T);
self.hll
.extend(array.into_iter().flatten().map(|v| v.to_vec()));
Ok(())
}
default_accumulator_impl!();
}
impl<T> Accumulator for StringHLLAccumulator<T>
where
T: OffsetSizeTrait,
{
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
let array: &GenericStringArray<T> =
downcast_value!(values[0], GenericStringArray, T);
self.hll
.extend(array.into_iter().flatten().map(|i| i.to_string()));
Ok(())
}
default_accumulator_impl!();
}
impl<T> Accumulator for NumericHLLAccumulator<T>
where
T: ArrowPrimitiveType + Debug,
T::Native: Hash,
{
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
let array: &PrimitiveArray<T> = downcast_value!(values[0], PrimitiveArray, T);
self.hll.extend(array.into_iter().flatten());
Ok(())
}
default_accumulator_impl!();
}
impl Debug for ApproxDistinct {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
f.debug_struct("ApproxDistinct")
.field("name", &self.name())
.field("signature", &self.signature)
.finish()
}
}
impl Default for ApproxDistinct {
fn default() -> Self {
Self::new()
}
}
pub struct ApproxDistinct {
signature: Signature,
}
impl ApproxDistinct {
pub fn new() -> Self {
Self {
signature: Signature::any(1, Volatility::Immutable),
}
}
}
impl AggregateUDFImpl for ApproxDistinct {
fn as_any(&self) -> &dyn Any {
self
}
fn name(&self) -> &str {
"approx_distinct"
}
fn signature(&self) -> &Signature {
&self.signature
}
fn return_type(&self, _: &[DataType]) -> Result<DataType> {
Ok(DataType::UInt64)
}
fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<Field>> {
Ok(vec![Field::new(
format_state_name(args.name, "hll_registers"),
DataType::Binary,
false,
)])
}
fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
let data_type = acc_args.exprs[0].data_type(acc_args.schema)?;
let accumulator: Box<dyn Accumulator> = match data_type {
DataType::UInt8 => Box::new(NumericHLLAccumulator::<UInt8Type>::new()),
DataType::UInt16 => Box::new(NumericHLLAccumulator::<UInt16Type>::new()),
DataType::UInt32 => Box::new(NumericHLLAccumulator::<UInt32Type>::new()),
DataType::UInt64 => Box::new(NumericHLLAccumulator::<UInt64Type>::new()),
DataType::Int8 => Box::new(NumericHLLAccumulator::<Int8Type>::new()),
DataType::Int16 => Box::new(NumericHLLAccumulator::<Int16Type>::new()),
DataType::Int32 => Box::new(NumericHLLAccumulator::<Int32Type>::new()),
DataType::Int64 => Box::new(NumericHLLAccumulator::<Int64Type>::new()),
DataType::Utf8 => Box::new(StringHLLAccumulator::<i32>::new()),
DataType::LargeUtf8 => Box::new(StringHLLAccumulator::<i64>::new()),
DataType::Binary => Box::new(BinaryHLLAccumulator::<i32>::new()),
DataType::LargeBinary => Box::new(BinaryHLLAccumulator::<i64>::new()),
other => {
return not_impl_err!(
"Support for 'approx_distinct' for data type {other} is not implemented"
)
}
};
Ok(accumulator)
}
fn documentation(&self) -> Option<&Documentation> {
Some(get_approx_distinct_doc())
}
}
static DOCUMENTATION: OnceLock<Documentation> = OnceLock::new();
fn get_approx_distinct_doc() -> &'static Documentation {
DOCUMENTATION.get_or_init(|| {
Documentation::builder()
.with_doc_section(DOC_SECTION_APPROXIMATE)
.with_description(
"Returns the approximate number of distinct input values calculated using the HyperLogLog algorithm.",
)
.with_syntax_example("approx_distinct(expression)")
.with_sql_example(r#"```sql
> SELECT approx_distinct(column_name) FROM table_name;
+-----------------------------------+
| approx_distinct(column_name) |
+-----------------------------------+
| 42 |
+-----------------------------------+
```"#,
)
.with_standard_argument("expression", None)
.build()
.unwrap()
})
}