1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! [`ScalarUDFImpl`] definitions for range and gen_series functions.

use crate::utils::make_scalar_function;
use arrow::array::{Array, ArrayRef, Int64Array, ListArray};
use arrow::datatypes::{DataType, Field};
use arrow_array::types::{Date32Type, IntervalMonthDayNanoType};
use arrow_array::{Date32Array, NullArray};
use arrow_buffer::{
    BooleanBufferBuilder, IntervalMonthDayNano, NullBuffer, OffsetBuffer,
};
use arrow_schema::DataType::{Date32, Int64, Interval, List};
use arrow_schema::IntervalUnit::MonthDayNano;
use datafusion_common::cast::{as_date32_array, as_int64_array, as_interval_mdn_array};
use datafusion_common::{exec_err, not_impl_datafusion_err, Result};
use datafusion_expr::{
    ColumnarValue, ScalarUDFImpl, Signature, TypeSignature, Volatility,
};
use std::any::Any;
use std::sync::Arc;

make_udf_expr_and_func!(
    Range,
    range,
    start stop step,
    "create a list of values in the range between start and stop",
    range_udf
);
#[derive(Debug)]
pub(super) struct Range {
    signature: Signature,
    aliases: Vec<String>,
}
impl Range {
    pub fn new() -> Self {
        Self {
            signature: Signature::one_of(
                vec![
                    TypeSignature::Exact(vec![Int64]),
                    TypeSignature::Exact(vec![Int64, Int64]),
                    TypeSignature::Exact(vec![Int64, Int64, Int64]),
                    TypeSignature::Exact(vec![Date32, Date32, Interval(MonthDayNano)]),
                    TypeSignature::Any(3),
                ],
                Volatility::Immutable,
            ),
            aliases: vec![],
        }
    }
}
impl ScalarUDFImpl for Range {
    fn as_any(&self) -> &dyn Any {
        self
    }
    fn name(&self) -> &str {
        "range"
    }

    fn signature(&self) -> &Signature {
        &self.signature
    }

    fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
        if arg_types.iter().any(|t| t.eq(&DataType::Null)) {
            Ok(DataType::Null)
        } else {
            Ok(List(Arc::new(Field::new(
                "item",
                arg_types[0].clone(),
                true,
            ))))
        }
    }

    fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> {
        if args.iter().any(|arg| arg.data_type() == DataType::Null) {
            return Ok(ColumnarValue::Array(Arc::new(NullArray::new(1))));
        }
        match args[0].data_type() {
            Int64 => make_scalar_function(|args| gen_range_inner(args, false))(args),
            Date32 => make_scalar_function(|args| gen_range_date(args, false))(args),
            _ => {
                exec_err!("unsupported type for range")
            }
        }
    }

    fn aliases(&self) -> &[String] {
        &self.aliases
    }
}

make_udf_expr_and_func!(
    GenSeries,
    gen_series,
    start stop step,
    "create a list of values in the range between start and stop, include upper bound",
    gen_series_udf
);
#[derive(Debug)]
pub(super) struct GenSeries {
    signature: Signature,
    aliases: Vec<String>,
}
impl GenSeries {
    pub fn new() -> Self {
        Self {
            signature: Signature::one_of(
                vec![
                    TypeSignature::Exact(vec![Int64]),
                    TypeSignature::Exact(vec![Int64, Int64]),
                    TypeSignature::Exact(vec![Int64, Int64, Int64]),
                    TypeSignature::Exact(vec![Date32, Date32, Interval(MonthDayNano)]),
                    TypeSignature::Any(3),
                ],
                Volatility::Immutable,
            ),
            aliases: vec![],
        }
    }
}
impl ScalarUDFImpl for GenSeries {
    fn as_any(&self) -> &dyn Any {
        self
    }
    fn name(&self) -> &str {
        "generate_series"
    }

    fn signature(&self) -> &Signature {
        &self.signature
    }

    fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
        if arg_types.iter().any(|t| t.eq(&DataType::Null)) {
            Ok(DataType::Null)
        } else {
            Ok(List(Arc::new(Field::new(
                "item",
                arg_types[0].clone(),
                true,
            ))))
        }
    }

    fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> {
        if args.iter().any(|arg| arg.data_type() == DataType::Null) {
            return Ok(ColumnarValue::Array(Arc::new(NullArray::new(1))));
        }
        match args[0].data_type() {
            Int64 => make_scalar_function(|args| gen_range_inner(args, true))(args),
            Date32 => make_scalar_function(|args| gen_range_date(args, true))(args),
            _ => {
                exec_err!("unsupported type for range")
            }
        }
    }

    fn aliases(&self) -> &[String] {
        &self.aliases
    }
}

/// Generates an array of integers from start to stop with a given step.
///
/// This function takes 1 to 3 ArrayRefs as arguments, representing start, stop, and step values.
/// It returns a `Result<ArrayRef>` representing the resulting ListArray after the operation.
///
/// # Arguments
///
/// * `args` - An array of 1 to 3 ArrayRefs representing start, stop, and step(step value can not be zero.) values.
///
/// # Examples
///
/// gen_range(3) => [0, 1, 2]
/// gen_range(1, 4) => [1, 2, 3]
/// gen_range(1, 7, 2) => [1, 3, 5]
pub(super) fn gen_range_inner(
    args: &[ArrayRef],
    include_upper: bool,
) -> Result<ArrayRef> {
    let (start_array, stop_array, step_array) = match args.len() {
        1 => (None, as_int64_array(&args[0])?, None),
        2 => (
            Some(as_int64_array(&args[0])?),
            as_int64_array(&args[1])?,
            None,
        ),
        3 => (
            Some(as_int64_array(&args[0])?),
            as_int64_array(&args[1])?,
            Some(as_int64_array(&args[2])?),
        ),
        _ => return exec_err!("gen_range expects 1 to 3 arguments"),
    };

    let mut values = vec![];
    let mut offsets = vec![0];
    let mut valid = BooleanBufferBuilder::new(stop_array.len());
    for (idx, stop) in stop_array.iter().enumerate() {
        match retrieve_range_args(start_array, stop, step_array, idx) {
            Some((_, _, 0)) => {
                return exec_err!(
                    "step can't be 0 for function {}(start [, stop, step])",
                    if include_upper {
                        "generate_series"
                    } else {
                        "range"
                    }
                );
            }
            Some((start, stop, step)) => {
                // Below, we utilize `usize` to represent steps.
                // On 32-bit targets, the absolute value of `i64` may fail to fit into `usize`.
                let step_abs = usize::try_from(step.unsigned_abs()).map_err(|_| {
                    not_impl_datafusion_err!("step {} can't fit into usize", step)
                })?;
                values.extend(
                    gen_range_iter(start, stop, step < 0, include_upper)
                        .step_by(step_abs),
                );
                offsets.push(values.len() as i32);
                valid.append(true);
            }
            // If any of the arguments is NULL, append a NULL value to the result.
            None => {
                offsets.push(values.len() as i32);
                valid.append(false);
            }
        };
    }
    let arr = Arc::new(ListArray::try_new(
        Arc::new(Field::new("item", Int64, true)),
        OffsetBuffer::new(offsets.into()),
        Arc::new(Int64Array::from(values)),
        Some(NullBuffer::new(valid.finish())),
    )?);
    Ok(arr)
}

/// Get the (start, stop, step) args for the range and generate_series function.
/// If any of the arguments is NULL, returns None.
fn retrieve_range_args(
    start_array: Option<&Int64Array>,
    stop: Option<i64>,
    step_array: Option<&Int64Array>,
    idx: usize,
) -> Option<(i64, i64, i64)> {
    // Default start value is 0 if not provided
    let start =
        start_array.map_or(Some(0), |arr| arr.is_valid(idx).then(|| arr.value(idx)))?;
    let stop = stop?;
    // Default step value is 1 if not provided
    let step =
        step_array.map_or(Some(1), |arr| arr.is_valid(idx).then(|| arr.value(idx)))?;
    Some((start, stop, step))
}

/// Returns an iterator of i64 values from start to stop
fn gen_range_iter(
    start: i64,
    stop: i64,
    decreasing: bool,
    include_upper: bool,
) -> Box<dyn Iterator<Item = i64>> {
    match (decreasing, include_upper) {
        // Decreasing range, stop is inclusive
        (true, true) => Box::new((stop..=start).rev()),
        // Decreasing range, stop is exclusive
        (true, false) => {
            if stop == i64::MAX {
                // start is never greater than stop, and stop is exclusive,
                // so the decreasing range must be empty.
                Box::new(std::iter::empty())
            } else {
                // Increase the stop value by one to exclude it.
                // Since stop is not i64::MAX, `stop + 1` will not overflow.
                Box::new((stop + 1..=start).rev())
            }
        }
        // Increasing range, stop is inclusive
        (false, true) => Box::new(start..=stop),
        // Increasing range, stop is exclusive
        (false, false) => Box::new(start..stop),
    }
}

fn gen_range_date(args: &[ArrayRef], include_upper: bool) -> Result<ArrayRef> {
    if args.len() != 3 {
        return exec_err!("arguments length does not match");
    }
    let (start_array, stop_array, step_array) = (
        Some(as_date32_array(&args[0])?),
        as_date32_array(&args[1])?,
        Some(as_interval_mdn_array(&args[2])?),
    );

    let mut values = vec![];
    let mut offsets = vec![0];
    for (idx, stop) in stop_array.iter().enumerate() {
        let mut stop = stop.unwrap_or(0);
        let start = start_array.as_ref().map(|x| x.value(idx)).unwrap_or(0);
        let step = step_array.as_ref().map(|arr| arr.value(idx)).unwrap_or(
            IntervalMonthDayNano {
                months: 0,
                days: 0,
                nanoseconds: 1,
            },
        );
        let (months, days, _) = IntervalMonthDayNanoType::to_parts(step);
        let neg = months < 0 || days < 0;
        if !include_upper {
            stop = Date32Type::subtract_month_day_nano(stop, step);
        }
        let mut new_date = start;
        loop {
            if neg && new_date < stop || !neg && new_date > stop {
                break;
            }
            values.push(new_date);
            new_date = Date32Type::add_month_day_nano(new_date, step);
        }
        offsets.push(values.len() as i32);
    }

    let arr = Arc::new(ListArray::try_new(
        Arc::new(Field::new("item", Date32, true)),
        OffsetBuffer::new(offsets.into()),
        Arc::new(Date32Array::from(values)),
        None,
    )?);
    Ok(arr)
}