1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! array function utils
use std::sync::Arc;
use arrow::{array::ArrayRef, datatypes::DataType};
use arrow_array::{
Array, BooleanArray, GenericListArray, ListArray, OffsetSizeTrait, Scalar,
UInt32Array,
};
use arrow_buffer::OffsetBuffer;
use arrow_schema::Field;
use datafusion_common::cast::{as_large_list_array, as_list_array};
use datafusion_common::{exec_err, plan_err, Result, ScalarValue};
use core::any::type_name;
use datafusion_common::DataFusionError;
use datafusion_expr::{ColumnarValue, Expr, ScalarFunctionImplementation};
macro_rules! downcast_arg {
($ARG:expr, $ARRAY_TYPE:ident) => {{
$ARG.as_any().downcast_ref::<$ARRAY_TYPE>().ok_or_else(|| {
DataFusionError::Internal(format!(
"could not cast to {}",
type_name::<$ARRAY_TYPE>()
))
})?
}};
}
pub(crate) use downcast_arg;
pub(crate) fn check_datatypes(name: &str, args: &[&ArrayRef]) -> Result<()> {
let data_type = args[0].data_type();
if !args.iter().all(|arg| {
arg.data_type().equals_datatype(data_type)
|| arg.data_type().equals_datatype(&DataType::Null)
}) {
let types = args.iter().map(|arg| arg.data_type()).collect::<Vec<_>>();
return plan_err!("{name} received incompatible types: '{types:?}'.");
}
Ok(())
}
/// array function wrapper that differentiates between scalar (length 1) and array.
pub(crate) fn make_scalar_function<F>(inner: F) -> ScalarFunctionImplementation
where
F: Fn(&[ArrayRef]) -> Result<ArrayRef> + Sync + Send + 'static,
{
Arc::new(move |args: &[ColumnarValue]| {
// first, identify if any of the arguments is an Array. If yes, store its `len`,
// as any scalar will need to be converted to an array of len `len`.
let len = args
.iter()
.fold(Option::<usize>::None, |acc, arg| match arg {
ColumnarValue::Scalar(_) => acc,
ColumnarValue::Array(a) => Some(a.len()),
});
let is_scalar = len.is_none();
let args = ColumnarValue::values_to_arrays(args)?;
let result = (inner)(&args);
if is_scalar {
// If all inputs are scalar, keeps output as scalar
let result = result.and_then(|arr| ScalarValue::try_from_array(&arr, 0));
result.map(ColumnarValue::Scalar)
} else {
result.map(ColumnarValue::Array)
}
})
}
pub(crate) fn align_array_dimensions<O: OffsetSizeTrait>(
args: Vec<ArrayRef>,
) -> Result<Vec<ArrayRef>> {
let args_ndim = args
.iter()
.map(|arg| datafusion_common::utils::list_ndims(arg.data_type()))
.collect::<Vec<_>>();
let max_ndim = args_ndim.iter().max().unwrap_or(&0);
// Align the dimensions of the arrays
let aligned_args: Result<Vec<ArrayRef>> = args
.into_iter()
.zip(args_ndim.iter())
.map(|(array, ndim)| {
if ndim < max_ndim {
let mut aligned_array = Arc::clone(&array);
for _ in 0..(max_ndim - ndim) {
let data_type = aligned_array.data_type().to_owned();
let array_lengths = vec![1; aligned_array.len()];
let offsets = OffsetBuffer::<O>::from_lengths(array_lengths);
aligned_array = Arc::new(GenericListArray::<O>::try_new(
Arc::new(Field::new("item", data_type, true)),
offsets,
aligned_array,
None,
)?)
}
Ok(aligned_array)
} else {
Ok(Arc::clone(&array))
}
})
.collect();
aligned_args
}
/// Computes a BooleanArray indicating equality or inequality between elements in a list array and a specified element array.
///
/// # Arguments
///
/// * `list_array_row` - A reference to a trait object implementing the Arrow `Array` trait. It represents the list array for which the equality or inequality will be compared.
///
/// * `element_array` - A reference to a trait object implementing the Arrow `Array` trait. It represents the array with which each element in the `list_array_row` will be compared.
///
/// * `row_index` - The index of the row in the `element_array` and `list_array` to use for the comparison.
///
/// * `eq` - A boolean flag. If `true`, the function computes equality; if `false`, it computes inequality.
///
/// # Returns
///
/// Returns a `Result<BooleanArray>` representing the comparison results. The result may contain an error if there are issues with the computation.
///
/// # Example
///
/// ```text
/// compare_element_to_list(
/// [1, 2, 3], [1, 2, 3], 0, true => [true, false, false]
/// [1, 2, 3, 3, 2, 1], [1, 2, 3], 1, true => [false, true, false, false, true, false]
///
/// [[1, 2, 3], [2, 3, 4], [3, 4, 5]], [[1, 2, 3], [2, 3, 4], [3, 4, 5]], 0, true => [true, false, false]
/// [[1, 2, 3], [2, 3, 4], [2, 3, 4]], [[1, 2, 3], [2, 3, 4], [3, 4, 5]], 1, false => [true, false, false]
/// )
/// ```
pub(crate) fn compare_element_to_list(
list_array_row: &dyn Array,
element_array: &dyn Array,
row_index: usize,
eq: bool,
) -> Result<BooleanArray> {
if list_array_row.data_type() != element_array.data_type() {
return exec_err!(
"compare_element_to_list received incompatible types: '{:?}' and '{:?}'.",
list_array_row.data_type(),
element_array.data_type()
);
}
let indices = UInt32Array::from(vec![row_index as u32]);
let element_array_row = arrow::compute::take(element_array, &indices, None)?;
// Compute all positions in list_row_array (that is itself an
// array) that are equal to `from_array_row`
let res = match element_array_row.data_type() {
// arrow_ord::cmp::eq does not support ListArray, so we need to compare it by loop
DataType::List(_) => {
// compare each element of the from array
let element_array_row_inner = as_list_array(&element_array_row)?.value(0);
let list_array_row_inner = as_list_array(list_array_row)?;
list_array_row_inner
.iter()
// compare element by element the current row of list_array
.map(|row| {
row.map(|row| {
if eq {
row.eq(&element_array_row_inner)
} else {
row.ne(&element_array_row_inner)
}
})
})
.collect::<BooleanArray>()
}
DataType::LargeList(_) => {
// compare each element of the from array
let element_array_row_inner =
as_large_list_array(&element_array_row)?.value(0);
let list_array_row_inner = as_large_list_array(list_array_row)?;
list_array_row_inner
.iter()
// compare element by element the current row of list_array
.map(|row| {
row.map(|row| {
if eq {
row.eq(&element_array_row_inner)
} else {
row.ne(&element_array_row_inner)
}
})
})
.collect::<BooleanArray>()
}
_ => {
let element_arr = Scalar::new(element_array_row);
// use not_distinct so we can compare NULL
if eq {
arrow_ord::cmp::not_distinct(&list_array_row, &element_arr)?
} else {
arrow_ord::cmp::distinct(&list_array_row, &element_arr)?
}
}
};
Ok(res)
}
/// Returns the length of each array dimension
pub(crate) fn compute_array_dims(
arr: Option<ArrayRef>,
) -> Result<Option<Vec<Option<u64>>>> {
let mut value = match arr {
Some(arr) => arr,
None => return Ok(None),
};
if value.is_empty() {
return Ok(None);
}
let mut res = vec![Some(value.len() as u64)];
loop {
match value.data_type() {
DataType::List(..) => {
value = downcast_arg!(value, ListArray).value(0);
res.push(Some(value.len() as u64));
}
_ => return Ok(Some(res)),
}
}
}
/// Returns the name of the argument at index `i`, or an empty string if the index is out of bounds.
pub(super) fn get_arg_name(args: &[Expr], i: usize) -> String {
args.get(i).map(ToString::to_string).unwrap_or_default()
}
#[cfg(test)]
mod tests {
use super::*;
use arrow::datatypes::Int64Type;
use datafusion_common::utils::array_into_list_array_nullable;
/// Only test internal functions, array-related sql functions will be tested in sqllogictest `array.slt`
#[test]
fn test_align_array_dimensions() {
let array1d_1 =
Arc::new(ListArray::from_iter_primitive::<Int64Type, _, _>(vec![
Some(vec![Some(1), Some(2), Some(3)]),
Some(vec![Some(4), Some(5)]),
]));
let array1d_2 =
Arc::new(ListArray::from_iter_primitive::<Int64Type, _, _>(vec![
Some(vec![Some(6), Some(7), Some(8)]),
]));
let array2d_1 = Arc::new(array_into_list_array_nullable(
Arc::clone(&array1d_1) as ArrayRef
)) as ArrayRef;
let array2d_2 = Arc::new(array_into_list_array_nullable(
Arc::clone(&array1d_2) as ArrayRef
)) as ArrayRef;
let res = align_array_dimensions::<i32>(vec![
array1d_1.to_owned(),
array2d_2.to_owned(),
])
.unwrap();
let expected = as_list_array(&array2d_1).unwrap();
let expected_dim = datafusion_common::utils::list_ndims(array2d_1.data_type());
assert_ne!(as_list_array(&res[0]).unwrap(), expected);
assert_eq!(
datafusion_common::utils::list_ndims(res[0].data_type()),
expected_dim
);
let array3d_1 = Arc::new(array_into_list_array_nullable(array2d_1)) as ArrayRef;
let array3d_2 = array_into_list_array_nullable(array2d_2.to_owned());
let res =
align_array_dimensions::<i32>(vec![array1d_1, Arc::new(array3d_2.clone())])
.unwrap();
let expected = as_list_array(&array3d_1).unwrap();
let expected_dim = datafusion_common::utils::list_ndims(array3d_1.data_type());
assert_ne!(as_list_array(&res[0]).unwrap(), expected);
assert_eq!(
datafusion_common::utils::list_ndims(res[0].data_type()),
expected_dim
);
}
}