1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! SQL planning extensions like [`NestedFunctionPlanner`] and [`FieldAccessPlanner`]

use datafusion_common::{plan_err, utils::list_ndims, DFSchema, Result};
use datafusion_expr::expr::ScalarFunction;
use datafusion_expr::{
    planner::{ExprPlanner, PlannerResult, RawBinaryExpr, RawFieldAccessExpr},
    sqlparser, Expr, ExprSchemable, GetFieldAccess,
};
use datafusion_functions::expr_fn::get_field;
use datafusion_functions_aggregate::nth_value::nth_value_udaf;

use crate::map::map_udf;
use crate::{
    array_has::{array_has_all, array_has_udf},
    expr_fn::{array_append, array_concat, array_prepend},
    extract::{array_element, array_slice},
    make_array::make_array,
};

pub struct NestedFunctionPlanner;

impl ExprPlanner for NestedFunctionPlanner {
    fn plan_binary_op(
        &self,
        expr: RawBinaryExpr,
        schema: &DFSchema,
    ) -> Result<PlannerResult<RawBinaryExpr>> {
        let RawBinaryExpr { op, left, right } = expr;

        if op == sqlparser::ast::BinaryOperator::StringConcat {
            let left_type = left.get_type(schema)?;
            let right_type = right.get_type(schema)?;
            let left_list_ndims = list_ndims(&left_type);
            let right_list_ndims = list_ndims(&right_type);

            // Rewrite string concat operator to function based on types
            // if we get list || list then we rewrite it to array_concat()
            // if we get list || non-list then we rewrite it to array_append()
            // if we get non-list || list then we rewrite it to array_prepend()
            // if we get string || string then we rewrite it to concat()

            // We determine the target function to rewrite based on the list n-dimension, the check is not exact but sufficient.
            // The exact validity check is handled in the actual function, so even if there is 3d list appended with 1d list, it is also fine to rewrite.
            if left_list_ndims + right_list_ndims == 0 {
                // TODO: concat function ignore null, but string concat takes null into consideration
                // we can rewrite it to concat if we can configure the behaviour of concat function to the one like `string concat operator`
            } else if left_list_ndims == right_list_ndims {
                return Ok(PlannerResult::Planned(array_concat(vec![left, right])));
            } else if left_list_ndims > right_list_ndims {
                return Ok(PlannerResult::Planned(array_append(left, right)));
            } else if left_list_ndims < right_list_ndims {
                return Ok(PlannerResult::Planned(array_prepend(left, right)));
            }
        } else if matches!(
            op,
            sqlparser::ast::BinaryOperator::AtArrow
                | sqlparser::ast::BinaryOperator::ArrowAt
        ) {
            let left_type = left.get_type(schema)?;
            let right_type = right.get_type(schema)?;
            let left_list_ndims = list_ndims(&left_type);
            let right_list_ndims = list_ndims(&right_type);
            // if both are list
            if left_list_ndims > 0 && right_list_ndims > 0 {
                if op == sqlparser::ast::BinaryOperator::AtArrow {
                    // array1 @> array2 -> array_has_all(array1, array2)
                    return Ok(PlannerResult::Planned(array_has_all(left, right)));
                } else {
                    // array1 <@ array2 -> array_has_all(array2, array1)
                    return Ok(PlannerResult::Planned(array_has_all(right, left)));
                }
            }
        }

        Ok(PlannerResult::Original(RawBinaryExpr { op, left, right }))
    }

    fn plan_array_literal(
        &self,
        exprs: Vec<Expr>,
        _schema: &DFSchema,
    ) -> Result<PlannerResult<Vec<Expr>>> {
        Ok(PlannerResult::Planned(make_array(exprs)))
    }

    fn plan_make_map(&self, args: Vec<Expr>) -> Result<PlannerResult<Vec<Expr>>> {
        if args.len() % 2 != 0 {
            return plan_err!("make_map requires an even number of arguments");
        }

        let (keys, values): (Vec<_>, Vec<_>) =
            args.into_iter().enumerate().partition(|(i, _)| i % 2 == 0);
        let keys = make_array(keys.into_iter().map(|(_, e)| e).collect());
        let values = make_array(values.into_iter().map(|(_, e)| e).collect());

        Ok(PlannerResult::Planned(Expr::ScalarFunction(
            ScalarFunction::new_udf(map_udf(), vec![keys, values]),
        )))
    }

    fn plan_any(&self, expr: RawBinaryExpr) -> Result<PlannerResult<RawBinaryExpr>> {
        if expr.op == sqlparser::ast::BinaryOperator::Eq {
            Ok(PlannerResult::Planned(Expr::ScalarFunction(
                ScalarFunction::new_udf(
                    array_has_udf(),
                    // left and right are reversed here so `needle=any(haystack)` -> `array_has(haystack, needle)`
                    vec![expr.right, expr.left],
                ),
            )))
        } else {
            plan_err!("Unsupported AnyOp: '{}', only '=' is supported", expr.op)
        }
    }
}

pub struct FieldAccessPlanner;

impl ExprPlanner for FieldAccessPlanner {
    fn plan_field_access(
        &self,
        expr: RawFieldAccessExpr,
        _schema: &DFSchema,
    ) -> Result<PlannerResult<RawFieldAccessExpr>> {
        let RawFieldAccessExpr { expr, field_access } = expr;

        match field_access {
            // expr["field"] => get_field(expr, "field")
            GetFieldAccess::NamedStructField { name } => {
                Ok(PlannerResult::Planned(get_field(expr, name)))
            }
            // expr[idx] ==> array_element(expr, idx)
            GetFieldAccess::ListIndex { key: index } => {
                match expr {
                    // Special case for array_agg(expr)[index] to NTH_VALUE(expr, index)
                    Expr::AggregateFunction(agg_func) if is_array_agg(&agg_func) => {
                        Ok(PlannerResult::Planned(Expr::AggregateFunction(
                            datafusion_expr::expr::AggregateFunction::new_udf(
                                nth_value_udaf(),
                                agg_func
                                    .args
                                    .into_iter()
                                    .chain(std::iter::once(*index))
                                    .collect(),
                                agg_func.distinct,
                                agg_func.filter,
                                agg_func.order_by,
                                agg_func.null_treatment,
                            ),
                        )))
                    }
                    _ => Ok(PlannerResult::Planned(array_element(expr, *index))),
                }
            }
            // expr[start, stop, stride] ==> array_slice(expr, start, stop, stride)
            GetFieldAccess::ListRange {
                start,
                stop,
                stride,
            } => Ok(PlannerResult::Planned(array_slice(
                expr,
                *start,
                *stop,
                Some(*stride),
            ))),
        }
    }
}

fn is_array_agg(agg_func: &datafusion_expr::expr::AggregateFunction) -> bool {
    return agg_func.func.name() == "array_agg";
}