1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! [`ScalarUDFImpl`] definitions for `make_array` function.

use std::{any::Any, sync::Arc};

use arrow::array::{ArrayData, Capacities, MutableArrayData};
use arrow_array::{
    new_null_array, Array, ArrayRef, GenericListArray, NullArray, OffsetSizeTrait,
};
use arrow_buffer::OffsetBuffer;
use arrow_schema::DataType::{LargeList, List, Null};
use arrow_schema::{DataType, Field};
use datafusion_common::internal_err;
use datafusion_common::{plan_err, utils::array_into_list_array_nullable, Result};
use datafusion_expr::type_coercion::binary::comparison_coercion;
use datafusion_expr::TypeSignature;
use datafusion_expr::{ColumnarValue, ScalarUDFImpl, Signature, Volatility};

use crate::utils::make_scalar_function;

make_udf_expr_and_func!(
    MakeArray,
    make_array,
    "Returns an Arrow array using the specified input expressions.",
    make_array_udf
);

#[derive(Debug)]
pub struct MakeArray {
    signature: Signature,
    aliases: Vec<String>,
}

impl Default for MakeArray {
    fn default() -> Self {
        Self::new()
    }
}

impl MakeArray {
    pub fn new() -> Self {
        Self {
            signature: Signature::one_of(
                vec![TypeSignature::UserDefined, TypeSignature::Any(0)],
                Volatility::Immutable,
            ),
            aliases: vec![String::from("make_list")],
        }
    }
}

impl ScalarUDFImpl for MakeArray {
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn name(&self) -> &str {
        "make_array"
    }

    fn signature(&self) -> &Signature {
        &self.signature
    }

    fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
        match arg_types.len() {
            0 => Ok(empty_array_type()),
            _ => {
                let mut expr_type = DataType::Null;
                for arg_type in arg_types {
                    if !arg_type.equals_datatype(&DataType::Null) {
                        expr_type = arg_type.clone();
                        break;
                    }
                }

                if expr_type.is_null() {
                    expr_type = DataType::Int64;
                }

                Ok(List(Arc::new(Field::new("item", expr_type, true))))
            }
        }
    }

    fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> {
        make_scalar_function(make_array_inner)(args)
    }

    fn invoke_no_args(&self, _number_rows: usize) -> Result<ColumnarValue> {
        make_scalar_function(make_array_inner)(&[])
    }

    fn aliases(&self) -> &[String] {
        &self.aliases
    }

    fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> {
        let new_type = arg_types.iter().skip(1).try_fold(
            arg_types.first().unwrap().clone(),
            |acc, x| {
                // The coerced types found by `comparison_coercion` are not guaranteed to be
                // coercible for the arguments. `comparison_coercion` returns more loose
                // types that can be coerced to both `acc` and `x` for comparison purpose.
                // See `maybe_data_types` for the actual coercion.
                let coerced_type = comparison_coercion(&acc, x);
                if let Some(coerced_type) = coerced_type {
                    Ok(coerced_type)
                } else {
                    internal_err!("Coercion from {acc:?} to {x:?} failed.")
                }
            },
        )?;
        Ok(vec![new_type; arg_types.len()])
    }
}

// Empty array is a special case that is useful for many other array functions
pub(super) fn empty_array_type() -> DataType {
    DataType::List(Arc::new(Field::new("item", DataType::Int64, true)))
}

/// `make_array_inner` is the implementation of the `make_array` function.
/// Constructs an array using the input `data` as `ArrayRef`.
/// Returns a reference-counted `Array` instance result.
pub(crate) fn make_array_inner(arrays: &[ArrayRef]) -> Result<ArrayRef> {
    let mut data_type = Null;
    for arg in arrays {
        let arg_data_type = arg.data_type();
        if !arg_data_type.equals_datatype(&Null) {
            data_type = arg_data_type.clone();
            break;
        }
    }

    match data_type {
        // Either an empty array or all nulls:
        Null => {
            let length = arrays.iter().map(|a| a.len()).sum();
            // By default Int64
            let array = new_null_array(&DataType::Int64, length);
            Ok(Arc::new(array_into_list_array_nullable(array)))
        }
        LargeList(..) => array_array::<i64>(arrays, data_type),
        _ => array_array::<i32>(arrays, data_type),
    }
}

/// Convert one or more [`ArrayRef`] of the same type into a
/// `ListArray` or 'LargeListArray' depending on the offset size.
///
/// # Example (non nested)
///
/// Calling `array(col1, col2)` where col1 and col2 are non nested
/// would return a single new `ListArray`, where each row was a list
/// of 2 elements:
///
/// ```text
/// ┌─────────┐   ┌─────────┐           ┌──────────────┐
/// │ ┌─────┐ │   │ ┌─────┐ │           │ ┌──────────┐ │
/// │ │  A  │ │   │ │  X  │ │           │ │  [A, X]  │ │
/// │ ├─────┤ │   │ ├─────┤ │           │ ├──────────┤ │
/// │ │NULL │ │   │ │  Y  │ │──────────▶│ │[NULL, Y] │ │
/// │ ├─────┤ │   │ ├─────┤ │           │ ├──────────┤ │
/// │ │  C  │ │   │ │  Z  │ │           │ │  [C, Z]  │ │
/// │ └─────┘ │   │ └─────┘ │           │ └──────────┘ │
/// └─────────┘   └─────────┘           └──────────────┘
///   col1           col2                    output
/// ```
///
/// # Example (nested)
///
/// Calling `array(col1, col2)` where col1 and col2 are lists
/// would return a single new `ListArray`, where each row was a list
/// of the corresponding elements of col1 and col2.
///
/// ``` text
/// ┌──────────────┐   ┌──────────────┐        ┌─────────────────────────────┐
/// │ ┌──────────┐ │   │ ┌──────────┐ │        │ ┌────────────────────────┐  │
/// │ │  [A, X]  │ │   │ │    []    │ │        │ │    [[A, X], []]        │  │
/// │ ├──────────┤ │   │ ├──────────┤ │        │ ├────────────────────────┤  │
/// │ │[NULL, Y] │ │   │ │[Q, R, S] │ │───────▶│ │ [[NULL, Y], [Q, R, S]] │  │
/// │ ├──────────┤ │   │ ├──────────┤ │        │ ├────────────────────────│  │
/// │ │  [C, Z]  │ │   │ │   NULL   │ │        │ │    [[C, Z], NULL]      │  │
/// │ └──────────┘ │   │ └──────────┘ │        │ └────────────────────────┘  │
/// └──────────────┘   └──────────────┘        └─────────────────────────────┘
///      col1               col2                         output
/// ```
fn array_array<O: OffsetSizeTrait>(
    args: &[ArrayRef],
    data_type: DataType,
) -> Result<ArrayRef> {
    // do not accept 0 arguments.
    if args.is_empty() {
        return plan_err!("Array requires at least one argument");
    }

    let mut data = vec![];
    let mut total_len = 0;
    for arg in args {
        let arg_data = if arg.as_any().is::<NullArray>() {
            ArrayData::new_empty(&data_type)
        } else {
            arg.to_data()
        };
        total_len += arg_data.len();
        data.push(arg_data);
    }

    let mut offsets: Vec<O> = Vec::with_capacity(total_len);
    offsets.push(O::usize_as(0));

    let capacity = Capacities::Array(total_len);
    let data_ref = data.iter().collect::<Vec<_>>();
    let mut mutable = MutableArrayData::with_capacities(data_ref, true, capacity);

    let num_rows = args[0].len();
    for row_idx in 0..num_rows {
        for (arr_idx, arg) in args.iter().enumerate() {
            if !arg.as_any().is::<NullArray>()
                && !arg.is_null(row_idx)
                && arg.is_valid(row_idx)
            {
                mutable.extend(arr_idx, row_idx, row_idx + 1);
            } else {
                mutable.extend_nulls(1);
            }
        }
        offsets.push(O::usize_as(mutable.len()));
    }
    let data = mutable.freeze();

    Ok(Arc::new(GenericListArray::<O>::try_new(
        Arc::new(Field::new("item", data_type, true)),
        OffsetBuffer::new(offsets.into()),
        arrow_array::make_array(data),
        None,
    )?))
}