datafusion_functions_nested/
range.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! [`ScalarUDFImpl`] definitions for range and gen_series functions.

use crate::utils::make_scalar_function;
use arrow::array::{Array, ArrayRef, Int64Array, ListArray, ListBuilder};
use arrow::datatypes::{DataType, Field};
use arrow_array::builder::{Date32Builder, TimestampNanosecondBuilder};
use arrow_array::temporal_conversions::as_datetime_with_timezone;
use arrow_array::timezone::Tz;
use arrow_array::types::{
    Date32Type, IntervalMonthDayNanoType, TimestampNanosecondType as TSNT,
};
use arrow_array::{NullArray, TimestampNanosecondArray};
use arrow_buffer::{BooleanBufferBuilder, NullBuffer, OffsetBuffer};
use arrow_schema::DataType::*;
use arrow_schema::IntervalUnit::MonthDayNano;
use arrow_schema::TimeUnit::Nanosecond;
use datafusion_common::cast::{
    as_date32_array, as_int64_array, as_interval_mdn_array, as_timestamp_nanosecond_array,
};
use datafusion_common::{
    exec_datafusion_err, exec_err, internal_err, not_impl_datafusion_err, Result,
};
use datafusion_expr::scalar_doc_sections::DOC_SECTION_ARRAY;
use datafusion_expr::{
    ColumnarValue, Documentation, ScalarUDFImpl, Signature, Volatility,
};
use itertools::Itertools;
use std::any::Any;
use std::cmp::Ordering;
use std::iter::from_fn;
use std::str::FromStr;
use std::sync::{Arc, OnceLock};

make_udf_expr_and_func!(
    Range,
    range,
    start stop step,
    "create a list of values in the range between start and stop",
    range_udf
);
#[derive(Debug)]
pub(super) struct Range {
    signature: Signature,
    aliases: Vec<String>,
}
impl Range {
    pub fn new() -> Self {
        Self {
            signature: Signature::user_defined(Volatility::Immutable),
            aliases: vec![],
        }
    }
}
impl ScalarUDFImpl for Range {
    fn as_any(&self) -> &dyn Any {
        self
    }
    fn name(&self) -> &str {
        "range"
    }

    fn signature(&self) -> &Signature {
        &self.signature
    }

    fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> {
        arg_types
            .iter()
            .map(|arg_type| match arg_type {
                Null => Ok(Null),
                Int8 => Ok(Int64),
                Int16 => Ok(Int64),
                Int32 => Ok(Int64),
                Int64 => Ok(Int64),
                UInt8 => Ok(Int64),
                UInt16 => Ok(Int64),
                UInt32 => Ok(Int64),
                UInt64 => Ok(Int64),
                Timestamp(_, tz) => Ok(Timestamp(Nanosecond, tz.clone())),
                Date32 => Ok(Date32),
                Date64 => Ok(Date32),
                Utf8 => Ok(Date32),
                LargeUtf8 => Ok(Date32),
                Utf8View => Ok(Date32),
                Interval(_) => Ok(Interval(MonthDayNano)),
                _ => exec_err!("Unsupported DataType"),
            })
            .try_collect()
    }

    fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
        if arg_types.iter().any(|t| t.is_null()) {
            Ok(Null)
        } else {
            Ok(List(Arc::new(Field::new(
                "item",
                arg_types[0].clone(),
                true,
            ))))
        }
    }

    fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> {
        if args.iter().any(|arg| arg.data_type().is_null()) {
            return Ok(ColumnarValue::Array(Arc::new(NullArray::new(1))));
        }
        match args[0].data_type() {
            Int64 => make_scalar_function(|args| gen_range_inner(args, false))(args),
            Date32 => make_scalar_function(|args| gen_range_date(args, false))(args),
            Timestamp(_, _) => {
                make_scalar_function(|args| gen_range_timestamp(args, false))(args)
            }
            dt => {
                exec_err!("unsupported type for RANGE. Expected Int64, Date32 or Timestamp, got: {dt}")
            }
        }
    }

    fn aliases(&self) -> &[String] {
        &self.aliases
    }

    fn documentation(&self) -> Option<&Documentation> {
        Some(get_range_doc())
    }
}

static DOCUMENTATION: OnceLock<Documentation> = OnceLock::new();

fn get_range_doc() -> &'static Documentation {
    DOCUMENTATION.get_or_init(|| {
        Documentation::builder()
            .with_doc_section(DOC_SECTION_ARRAY)
            .with_description(
                "Returns an Arrow array between start and stop with step. The range start..end contains all values with start <= x < end. It is empty if start >= end. Step cannot be 0.",
            )
            .with_syntax_example("range(start, stop, step)")
            .with_sql_example(
                r#"```sql
> select range(2, 10, 3);
+-----------------------------------+
| range(Int64(2),Int64(10),Int64(3))|
+-----------------------------------+
| [2, 5, 8]                         |
+-----------------------------------+

> select range(DATE '1992-09-01', DATE '1993-03-01', INTERVAL '1' MONTH);
+--------------------------------------------------------------+
| range(DATE '1992-09-01', DATE '1993-03-01', INTERVAL '1' MONTH) |
+--------------------------------------------------------------+
| [1992-09-01, 1992-10-01, 1992-11-01, 1992-12-01, 1993-01-01, 1993-02-01] |
+--------------------------------------------------------------+
```"#,
            )
            .with_argument(
                "start",
                "Start of the range. Ints, timestamps, dates or string types that can be coerced to Date32 are supported.",
            )
            .with_argument(
                "end",
                "End of the range (not included). Type must be the same as start.",
            )
            .with_argument(
                "step",
                "Increase by step (cannot be 0). Steps less than a day are supported only for timestamp ranges.",
            )
            .build()
            .unwrap()
    })
}

make_udf_expr_and_func!(
    GenSeries,
    gen_series,
    start stop step,
    "create a list of values in the range between start and stop, include upper bound",
    gen_series_udf
);
#[derive(Debug)]
pub(super) struct GenSeries {
    signature: Signature,
    aliases: Vec<String>,
}
impl GenSeries {
    pub fn new() -> Self {
        Self {
            signature: Signature::user_defined(Volatility::Immutable),
            aliases: vec![],
        }
    }
}
impl ScalarUDFImpl for GenSeries {
    fn as_any(&self) -> &dyn Any {
        self
    }
    fn name(&self) -> &str {
        "generate_series"
    }

    fn signature(&self) -> &Signature {
        &self.signature
    }

    fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> {
        arg_types
            .iter()
            .map(|arg_type| match arg_type {
                Null => Ok(Null),
                Int8 => Ok(Int64),
                Int16 => Ok(Int64),
                Int32 => Ok(Int64),
                Int64 => Ok(Int64),
                UInt8 => Ok(Int64),
                UInt16 => Ok(Int64),
                UInt32 => Ok(Int64),
                UInt64 => Ok(Int64),
                Timestamp(_, tz) => Ok(Timestamp(Nanosecond, tz.clone())),
                Date32 => Ok(Date32),
                Date64 => Ok(Date32),
                Utf8 => Ok(Date32),
                LargeUtf8 => Ok(Date32),
                Utf8View => Ok(Date32),
                Interval(_) => Ok(Interval(MonthDayNano)),
                _ => exec_err!("Unsupported DataType"),
            })
            .try_collect()
    }

    fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
        if arg_types.iter().any(|t| t.is_null()) {
            Ok(Null)
        } else {
            Ok(List(Arc::new(Field::new(
                "item",
                arg_types[0].clone(),
                true,
            ))))
        }
    }

    fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> {
        if args.iter().any(|arg| arg.data_type().is_null()) {
            return Ok(ColumnarValue::Array(Arc::new(NullArray::new(1))));
        }
        match args[0].data_type() {
            Int64 => make_scalar_function(|args| gen_range_inner(args, true))(args),
            Date32 => make_scalar_function(|args| gen_range_date(args, true))(args),
            Timestamp(_, _) => {
                make_scalar_function(|args| gen_range_timestamp(args, true))(args)
            }
            dt => {
                exec_err!(
                    "unsupported type for GENERATE_SERIES. Expected Int64, Date32 or Timestamp, got: {}",
                    dt
                )
            }
        }
    }

    fn aliases(&self) -> &[String] {
        &self.aliases
    }

    fn documentation(&self) -> Option<&Documentation> {
        Some(get_generate_series_doc())
    }
}

static GENERATE_SERIES_DOCUMENTATION: OnceLock<Documentation> = OnceLock::new();

fn get_generate_series_doc() -> &'static Documentation {
    GENERATE_SERIES_DOCUMENTATION.get_or_init(|| {
        Documentation::builder()
            .with_doc_section(DOC_SECTION_ARRAY)
            .with_description(
                "Similar to the range function, but it includes the upper bound.",
            )
            .with_syntax_example("generate_series(start, stop, step)")
            .with_sql_example(
                r#"```sql
> select generate_series(1,3);
+------------------------------------+
| generate_series(Int64(1),Int64(3)) |
+------------------------------------+
| [1, 2, 3]                          |
+------------------------------------+
```"#,
            )
            .with_argument(
                "start",
                "start of the series. Ints, timestamps, dates or string types that can be coerced to Date32 are supported.",
            )
            .with_argument(
                "end",
                "end of the series (included). Type must be the same as start.",
            )
            .with_argument(
                "step",
                "increase by step (can not be 0). Steps less than a day are supported only for timestamp ranges.",
            )
            .build()
            .unwrap()
    })
}

/// Generates an array of integers from start to stop with a given step.
///
/// This function takes 1 to 3 ArrayRefs as arguments, representing start, stop, and step values.
/// It returns a `Result<ArrayRef>` representing the resulting ListArray after the operation.
///
/// # Arguments
///
/// * `args` - An array of 1 to 3 ArrayRefs representing start, stop, and step(step value can not be zero.) values.
///
/// # Examples
///
/// gen_range(3) => [0, 1, 2]
/// gen_range(1, 4) => [1, 2, 3]
/// gen_range(1, 7, 2) => [1, 3, 5]
pub(super) fn gen_range_inner(
    args: &[ArrayRef],
    include_upper: bool,
) -> Result<ArrayRef> {
    let (start_array, stop_array, step_array) = match args.len() {
        1 => (None, as_int64_array(&args[0])?, None),
        2 => (
            Some(as_int64_array(&args[0])?),
            as_int64_array(&args[1])?,
            None,
        ),
        3 => (
            Some(as_int64_array(&args[0])?),
            as_int64_array(&args[1])?,
            Some(as_int64_array(&args[2])?),
        ),
        _ => return exec_err!("gen_range expects 1 to 3 arguments"),
    };

    let mut values = vec![];
    let mut offsets = vec![0];
    let mut valid = BooleanBufferBuilder::new(stop_array.len());
    for (idx, stop) in stop_array.iter().enumerate() {
        match retrieve_range_args(start_array, stop, step_array, idx) {
            Some((_, _, 0)) => {
                return exec_err!(
                    "step can't be 0 for function {}(start [, stop, step])",
                    if include_upper {
                        "generate_series"
                    } else {
                        "range"
                    }
                );
            }
            Some((start, stop, step)) => {
                // Below, we utilize `usize` to represent steps.
                // On 32-bit targets, the absolute value of `i64` may fail to fit into `usize`.
                let step_abs = usize::try_from(step.unsigned_abs()).map_err(|_| {
                    not_impl_datafusion_err!("step {} can't fit into usize", step)
                })?;
                values.extend(
                    gen_range_iter(start, stop, step < 0, include_upper)
                        .step_by(step_abs),
                );
                offsets.push(values.len() as i32);
                valid.append(true);
            }
            // If any of the arguments is NULL, append a NULL value to the result.
            None => {
                offsets.push(values.len() as i32);
                valid.append(false);
            }
        };
    }
    let arr = Arc::new(ListArray::try_new(
        Arc::new(Field::new("item", Int64, true)),
        OffsetBuffer::new(offsets.into()),
        Arc::new(Int64Array::from(values)),
        Some(NullBuffer::new(valid.finish())),
    )?);
    Ok(arr)
}

/// Get the (start, stop, step) args for the range and generate_series function.
/// If any of the arguments is NULL, returns None.
fn retrieve_range_args(
    start_array: Option<&Int64Array>,
    stop: Option<i64>,
    step_array: Option<&Int64Array>,
    idx: usize,
) -> Option<(i64, i64, i64)> {
    // Default start value is 0 if not provided
    let start =
        start_array.map_or(Some(0), |arr| arr.is_valid(idx).then(|| arr.value(idx)))?;
    let stop = stop?;
    // Default step value is 1 if not provided
    let step =
        step_array.map_or(Some(1), |arr| arr.is_valid(idx).then(|| arr.value(idx)))?;
    Some((start, stop, step))
}

/// Returns an iterator of i64 values from start to stop
fn gen_range_iter(
    start: i64,
    stop: i64,
    decreasing: bool,
    include_upper: bool,
) -> Box<dyn Iterator<Item = i64>> {
    match (decreasing, include_upper) {
        // Decreasing range, stop is inclusive
        (true, true) => Box::new((stop..=start).rev()),
        // Decreasing range, stop is exclusive
        (true, false) => {
            if stop == i64::MAX {
                // start is never greater than stop, and stop is exclusive,
                // so the decreasing range must be empty.
                Box::new(std::iter::empty())
            } else {
                // Increase the stop value by one to exclude it.
                // Since stop is not i64::MAX, `stop + 1` will not overflow.
                Box::new((stop + 1..=start).rev())
            }
        }
        // Increasing range, stop is inclusive
        (false, true) => Box::new(start..=stop),
        // Increasing range, stop is exclusive
        (false, false) => Box::new(start..stop),
    }
}

fn gen_range_date(args: &[ArrayRef], include_upper_bound: bool) -> Result<ArrayRef> {
    if args.len() != 3 {
        return exec_err!("arguments length does not match");
    }
    let (start_array, stop_array, step_array) = (
        Some(as_date32_array(&args[0])?),
        as_date32_array(&args[1])?,
        Some(as_interval_mdn_array(&args[2])?),
    );

    // values are date32s
    let values_builder = Date32Builder::new();
    let mut list_builder = ListBuilder::new(values_builder);

    for (idx, stop) in stop_array.iter().enumerate() {
        let mut stop = stop.unwrap_or(0);

        let start = if let Some(start_array_values) = start_array {
            start_array_values.value(idx)
        } else {
            list_builder.append_null();
            continue;
        };

        let step = if let Some(step) = step_array {
            step.value(idx)
        } else {
            list_builder.append_null();
            continue;
        };

        let (months, days, _) = IntervalMonthDayNanoType::to_parts(step);

        if months == 0 && days == 0 {
            return exec_err!("Cannot generate date range less than 1 day.");
        }

        let neg = months < 0 || days < 0;
        if !include_upper_bound {
            stop = Date32Type::subtract_month_day_nano(stop, step);
        }
        let mut new_date = start;

        let values = from_fn(|| {
            if (neg && new_date < stop) || (!neg && new_date > stop) {
                None
            } else {
                let current_date = new_date;
                new_date = Date32Type::add_month_day_nano(new_date, step);
                Some(Some(current_date))
            }
        });

        list_builder.append_value(values);
    }

    let arr = Arc::new(list_builder.finish());

    Ok(arr)
}

fn gen_range_timestamp(args: &[ArrayRef], include_upper_bound: bool) -> Result<ArrayRef> {
    if args.len() != 3 {
        return exec_err!(
            "Arguments length must be 3 for {}",
            if include_upper_bound {
                "GENERATE_SERIES"
            } else {
                "RANGE"
            }
        );
    }

    // coerce_types fn should coerce all types to Timestamp(Nanosecond, tz)
    let (start_arr, start_tz_opt) = cast_timestamp_arg(&args[0], include_upper_bound)?;
    let (stop_arr, stop_tz_opt) = cast_timestamp_arg(&args[1], include_upper_bound)?;
    let step_arr = as_interval_mdn_array(&args[2])?;
    let start_tz = parse_tz(start_tz_opt)?;
    let stop_tz = parse_tz(stop_tz_opt)?;

    // values are timestamps
    let values_builder = start_tz_opt
        .clone()
        .map_or_else(TimestampNanosecondBuilder::new, |start_tz_str| {
            TimestampNanosecondBuilder::new().with_timezone(start_tz_str)
        });
    let mut list_builder = ListBuilder::new(values_builder);

    for idx in 0..start_arr.len() {
        if start_arr.is_null(idx) || stop_arr.is_null(idx) || step_arr.is_null(idx) {
            list_builder.append_null();
            continue;
        }

        let start = start_arr.value(idx);
        let stop = stop_arr.value(idx);
        let step = step_arr.value(idx);

        let (months, days, ns) = IntervalMonthDayNanoType::to_parts(step);
        if months == 0 && days == 0 && ns == 0 {
            return exec_err!(
                "Interval argument to {} must not be 0",
                if include_upper_bound {
                    "GENERATE_SERIES"
                } else {
                    "RANGE"
                }
            );
        }

        let neg = TSNT::add_month_day_nano(start, step, start_tz)
            .ok_or(exec_datafusion_err!(
                "Cannot generate timestamp range where start + step overflows"
            ))?
            .cmp(&start)
            == Ordering::Less;

        let stop_dt = as_datetime_with_timezone::<TSNT>(stop, stop_tz).ok_or(
            exec_datafusion_err!(
                "Cannot generate timestamp for stop: {}: {:?}",
                stop,
                stop_tz
            ),
        )?;

        let mut current = start;
        let mut current_dt = as_datetime_with_timezone::<TSNT>(current, start_tz).ok_or(
            exec_datafusion_err!(
                "Cannot generate timestamp for start: {}: {:?}",
                current,
                start_tz
            ),
        )?;

        let values = from_fn(|| {
            if (include_upper_bound
                && ((neg && current_dt < stop_dt) || (!neg && current_dt > stop_dt)))
                || (!include_upper_bound
                    && ((neg && current_dt <= stop_dt)
                        || (!neg && current_dt >= stop_dt)))
            {
                return None;
            }

            let prev_current = current;

            if let Some(ts) = TSNT::add_month_day_nano(current, step, start_tz) {
                current = ts;
                current_dt = as_datetime_with_timezone::<TSNT>(current, start_tz)?;

                Some(Some(prev_current))
            } else {
                // we failed to parse the timestamp here so terminate the series
                None
            }
        });

        list_builder.append_value(values);
    }

    let arr = Arc::new(list_builder.finish());

    Ok(arr)
}

fn cast_timestamp_arg(
    arg: &ArrayRef,
    include_upper: bool,
) -> Result<(&TimestampNanosecondArray, &Option<Arc<str>>)> {
    match arg.data_type() {
        Timestamp(Nanosecond, tz_opt) => {
            Ok((as_timestamp_nanosecond_array(arg)?, tz_opt))
        }
        _ => {
            internal_err!(
                "Unexpected argument type for {} : {}",
                if include_upper {
                    "GENERATE_SERIES"
                } else {
                    "RANGE"
                },
                arg.data_type()
            )
        }
    }
}

fn parse_tz(tz: &Option<Arc<str>>) -> Result<Tz> {
    let tz = tz.as_ref().map_or_else(|| "+00", |s| s);

    Tz::from_str(tz)
        .map_err(|op| exec_datafusion_err!("failed to parse timezone {tz}: {:?}", op))
}