datafusion_functions_nested/planner.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! SQL planning extensions like [`NestedFunctionPlanner`] and [`FieldAccessPlanner`]
use datafusion_common::{plan_err, utils::list_ndims, DFSchema, Result};
use datafusion_expr::expr::ScalarFunction;
use datafusion_expr::{
planner::{ExprPlanner, PlannerResult, RawBinaryExpr, RawFieldAccessExpr},
sqlparser, Expr, ExprSchemable, GetFieldAccess,
};
use datafusion_functions::expr_fn::get_field;
use datafusion_functions_aggregate::nth_value::nth_value_udaf;
use crate::map::map_udf;
use crate::{
array_has::{array_has_all, array_has_udf},
expr_fn::{array_append, array_concat, array_prepend},
extract::{array_element, array_slice},
make_array::make_array,
};
#[derive(Debug)]
pub struct NestedFunctionPlanner;
impl ExprPlanner for NestedFunctionPlanner {
fn plan_binary_op(
&self,
expr: RawBinaryExpr,
schema: &DFSchema,
) -> Result<PlannerResult<RawBinaryExpr>> {
let RawBinaryExpr { op, left, right } = expr;
if op == sqlparser::ast::BinaryOperator::StringConcat {
let left_type = left.get_type(schema)?;
let right_type = right.get_type(schema)?;
let left_list_ndims = list_ndims(&left_type);
let right_list_ndims = list_ndims(&right_type);
// Rewrite string concat operator to function based on types
// if we get list || list then we rewrite it to array_concat()
// if we get list || non-list then we rewrite it to array_append()
// if we get non-list || list then we rewrite it to array_prepend()
// if we get string || string then we rewrite it to concat()
// We determine the target function to rewrite based on the list n-dimension, the check is not exact but sufficient.
// The exact validity check is handled in the actual function, so even if there is 3d list appended with 1d list, it is also fine to rewrite.
if left_list_ndims + right_list_ndims == 0 {
// TODO: concat function ignore null, but string concat takes null into consideration
// we can rewrite it to concat if we can configure the behaviour of concat function to the one like `string concat operator`
} else if left_list_ndims == right_list_ndims {
return Ok(PlannerResult::Planned(array_concat(vec![left, right])));
} else if left_list_ndims > right_list_ndims {
return Ok(PlannerResult::Planned(array_append(left, right)));
} else if left_list_ndims < right_list_ndims {
return Ok(PlannerResult::Planned(array_prepend(left, right)));
}
} else if matches!(
op,
sqlparser::ast::BinaryOperator::AtArrow
| sqlparser::ast::BinaryOperator::ArrowAt
) {
let left_type = left.get_type(schema)?;
let right_type = right.get_type(schema)?;
let left_list_ndims = list_ndims(&left_type);
let right_list_ndims = list_ndims(&right_type);
// if both are list
if left_list_ndims > 0 && right_list_ndims > 0 {
if op == sqlparser::ast::BinaryOperator::AtArrow {
// array1 @> array2 -> array_has_all(array1, array2)
return Ok(PlannerResult::Planned(array_has_all(left, right)));
} else {
// array1 <@ array2 -> array_has_all(array2, array1)
return Ok(PlannerResult::Planned(array_has_all(right, left)));
}
}
}
Ok(PlannerResult::Original(RawBinaryExpr { op, left, right }))
}
fn plan_array_literal(
&self,
exprs: Vec<Expr>,
_schema: &DFSchema,
) -> Result<PlannerResult<Vec<Expr>>> {
Ok(PlannerResult::Planned(make_array(exprs)))
}
fn plan_make_map(&self, args: Vec<Expr>) -> Result<PlannerResult<Vec<Expr>>> {
if args.len() % 2 != 0 {
return plan_err!("make_map requires an even number of arguments");
}
let (keys, values): (Vec<_>, Vec<_>) =
args.into_iter().enumerate().partition(|(i, _)| i % 2 == 0);
let keys = make_array(keys.into_iter().map(|(_, e)| e).collect());
let values = make_array(values.into_iter().map(|(_, e)| e).collect());
Ok(PlannerResult::Planned(Expr::ScalarFunction(
ScalarFunction::new_udf(map_udf(), vec![keys, values]),
)))
}
fn plan_any(&self, expr: RawBinaryExpr) -> Result<PlannerResult<RawBinaryExpr>> {
if expr.op == sqlparser::ast::BinaryOperator::Eq {
Ok(PlannerResult::Planned(Expr::ScalarFunction(
ScalarFunction::new_udf(
array_has_udf(),
// left and right are reversed here so `needle=any(haystack)` -> `array_has(haystack, needle)`
vec![expr.right, expr.left],
),
)))
} else {
plan_err!("Unsupported AnyOp: '{}', only '=' is supported", expr.op)
}
}
}
#[derive(Debug)]
pub struct FieldAccessPlanner;
impl ExprPlanner for FieldAccessPlanner {
fn plan_field_access(
&self,
expr: RawFieldAccessExpr,
_schema: &DFSchema,
) -> Result<PlannerResult<RawFieldAccessExpr>> {
let RawFieldAccessExpr { expr, field_access } = expr;
match field_access {
// expr["field"] => get_field(expr, "field")
GetFieldAccess::NamedStructField { name } => {
Ok(PlannerResult::Planned(get_field(expr, name)))
}
// expr[idx] ==> array_element(expr, idx)
GetFieldAccess::ListIndex { key: index } => {
match expr {
// Special case for array_agg(expr)[index] to NTH_VALUE(expr, index)
Expr::AggregateFunction(agg_func) if is_array_agg(&agg_func) => {
Ok(PlannerResult::Planned(Expr::AggregateFunction(
datafusion_expr::expr::AggregateFunction::new_udf(
nth_value_udaf(),
agg_func
.args
.into_iter()
.chain(std::iter::once(*index))
.collect(),
agg_func.distinct,
agg_func.filter,
agg_func.order_by,
agg_func.null_treatment,
),
)))
}
_ => Ok(PlannerResult::Planned(array_element(expr, *index))),
}
}
// expr[start, stop, stride] ==> array_slice(expr, start, stop, stride)
GetFieldAccess::ListRange {
start,
stop,
stride,
} => Ok(PlannerResult::Planned(array_slice(
expr,
*start,
*stop,
Some(*stride),
))),
}
}
}
fn is_array_agg(agg_func: &datafusion_expr::expr::AggregateFunction) -> bool {
return agg_func.func.name() == "array_agg";
}