datafusion_functions_window/
lead_lag.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! `lead` and `lag` window function implementations

use crate::utils::{get_scalar_value_from_args, get_signed_integer};
use datafusion_common::arrow::array::ArrayRef;
use datafusion_common::arrow::datatypes::DataType;
use datafusion_common::arrow::datatypes::Field;
use datafusion_common::{arrow_datafusion_err, DataFusionError, Result, ScalarValue};
use datafusion_expr::window_doc_sections::DOC_SECTION_ANALYTICAL;
use datafusion_expr::{
    Documentation, Literal, PartitionEvaluator, ReversedUDWF, Signature, TypeSignature,
    Volatility, WindowUDFImpl,
};
use datafusion_functions_window_common::expr::ExpressionArgs;
use datafusion_functions_window_common::field::WindowUDFFieldArgs;
use datafusion_functions_window_common::partition::PartitionEvaluatorArgs;
use datafusion_physical_expr_common::physical_expr::PhysicalExpr;
use std::any::Any;
use std::cmp::min;
use std::collections::VecDeque;
use std::ops::{Neg, Range};
use std::sync::{Arc, OnceLock};

get_or_init_udwf!(
    Lag,
    lag,
    "Returns the row value that precedes the current row by a specified \
    offset within partition. If no such row exists, then returns the \
    default value.",
    WindowShift::lag
);
get_or_init_udwf!(
    Lead,
    lead,
    "Returns the value from a row that follows the current row by a \
    specified offset within the partition. If no such row exists, then \
    returns the default value.",
    WindowShift::lead
);

/// Create an expression to represent the `lag` window function
///
/// returns value evaluated at the row that is offset rows before the current row within the partition;
/// if there is no such row, instead return default (which must be of the same type as value).
/// Both offset and default are evaluated with respect to the current row.
/// If omitted, offset defaults to 1 and default to null
pub fn lag(
    arg: datafusion_expr::Expr,
    shift_offset: Option<i64>,
    default_value: Option<ScalarValue>,
) -> datafusion_expr::Expr {
    let shift_offset_lit = shift_offset
        .map(|v| v.lit())
        .unwrap_or(ScalarValue::Null.lit());
    let default_lit = default_value.unwrap_or(ScalarValue::Null).lit();

    lag_udwf().call(vec![arg, shift_offset_lit, default_lit])
}

/// Create an expression to represent the `lead` window function
///
/// returns value evaluated at the row that is offset rows after the current row within the partition;
/// if there is no such row, instead return default (which must be of the same type as value).
/// Both offset and default are evaluated with respect to the current row.
/// If omitted, offset defaults to 1 and default to null
pub fn lead(
    arg: datafusion_expr::Expr,
    shift_offset: Option<i64>,
    default_value: Option<ScalarValue>,
) -> datafusion_expr::Expr {
    let shift_offset_lit = shift_offset
        .map(|v| v.lit())
        .unwrap_or(ScalarValue::Null.lit());
    let default_lit = default_value.unwrap_or(ScalarValue::Null).lit();

    lead_udwf().call(vec![arg, shift_offset_lit, default_lit])
}

#[derive(Debug)]
enum WindowShiftKind {
    Lag,
    Lead,
}

impl WindowShiftKind {
    fn name(&self) -> &'static str {
        match self {
            WindowShiftKind::Lag => "lag",
            WindowShiftKind::Lead => "lead",
        }
    }

    /// In [`WindowShiftEvaluator`] a positive offset is used to signal
    /// computation of `lag()`. So here we negate the input offset
    /// value when computing `lead()`.
    fn shift_offset(&self, value: Option<i64>) -> i64 {
        match self {
            WindowShiftKind::Lag => value.unwrap_or(1),
            WindowShiftKind::Lead => value.map(|v| v.neg()).unwrap_or(-1),
        }
    }
}

/// window shift expression
#[derive(Debug)]
pub struct WindowShift {
    signature: Signature,
    kind: WindowShiftKind,
}

impl WindowShift {
    fn new(kind: WindowShiftKind) -> Self {
        Self {
            signature: Signature::one_of(
                vec![
                    TypeSignature::Any(1),
                    TypeSignature::Any(2),
                    TypeSignature::Any(3),
                ],
                Volatility::Immutable,
            ),
            kind,
        }
    }

    pub fn lag() -> Self {
        Self::new(WindowShiftKind::Lag)
    }

    pub fn lead() -> Self {
        Self::new(WindowShiftKind::Lead)
    }
}

static LAG_DOCUMENTATION: OnceLock<Documentation> = OnceLock::new();

fn get_lag_doc() -> &'static Documentation {
    LAG_DOCUMENTATION.get_or_init(|| {
        Documentation::builder()
            .with_doc_section(DOC_SECTION_ANALYTICAL)
            .with_description(
                "Returns value evaluated at the row that is offset rows before the \
                current row within the partition; if there is no such row, instead return default \
                (which must be of the same type as value).",
            )
            .with_syntax_example("lag(expression, offset, default)")
            .with_argument("expression", "Expression to operate on")
            .with_argument("offset", "Integer. Specifies how many rows back \
            the value of expression should be retrieved. Defaults to 1.")
            .with_argument("default", "The default value if the offset is \
            not within the partition. Must be of the same type as expression.")
            .build()
            .unwrap()
    })
}

static LEAD_DOCUMENTATION: OnceLock<Documentation> = OnceLock::new();

fn get_lead_doc() -> &'static Documentation {
    LEAD_DOCUMENTATION.get_or_init(|| {
        Documentation::builder()
            .with_doc_section(DOC_SECTION_ANALYTICAL)
            .with_description(
                "Returns value evaluated at the row that is offset rows after the \
                current row within the partition; if there is no such row, instead return default \
                (which must be of the same type as value).",
            )
            .with_syntax_example("lead(expression, offset, default)")
            .with_argument("expression", "Expression to operate on")
            .with_argument("offset", "Integer. Specifies how many rows \
            forward the value of expression should be retrieved. Defaults to 1.")
            .with_argument("default", "The default value if the offset is \
            not within the partition. Must be of the same type as expression.")
            .build()
            .unwrap()
    })
}

impl WindowUDFImpl for WindowShift {
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn name(&self) -> &str {
        self.kind.name()
    }

    fn signature(&self) -> &Signature {
        &self.signature
    }

    /// Handles the case where `NULL` expression is passed as an
    /// argument to `lead`/`lag`. The type is refined depending
    /// on the default value argument.
    ///
    /// For more details see: <https://github.com/apache/datafusion/issues/12717>
    fn expressions(&self, expr_args: ExpressionArgs) -> Vec<Arc<dyn PhysicalExpr>> {
        parse_expr(expr_args.input_exprs(), expr_args.input_types())
            .into_iter()
            .collect::<Vec<_>>()
    }

    fn partition_evaluator(
        &self,
        partition_evaluator_args: PartitionEvaluatorArgs,
    ) -> Result<Box<dyn PartitionEvaluator>> {
        let shift_offset =
            get_scalar_value_from_args(partition_evaluator_args.input_exprs(), 1)?
                .map(get_signed_integer)
                .map_or(Ok(None), |v| v.map(Some))
                .map(|n| self.kind.shift_offset(n))
                .map(|offset| {
                    if partition_evaluator_args.is_reversed() {
                        -offset
                    } else {
                        offset
                    }
                })?;
        let default_value = parse_default_value(
            partition_evaluator_args.input_exprs(),
            partition_evaluator_args.input_types(),
        )?;

        Ok(Box::new(WindowShiftEvaluator {
            shift_offset,
            default_value,
            ignore_nulls: partition_evaluator_args.ignore_nulls(),
            non_null_offsets: VecDeque::new(),
        }))
    }

    fn field(&self, field_args: WindowUDFFieldArgs) -> Result<Field> {
        let return_type = parse_expr_type(field_args.input_types())?;

        Ok(Field::new(field_args.name(), return_type, true))
    }

    fn reverse_expr(&self) -> ReversedUDWF {
        match self.kind {
            WindowShiftKind::Lag => ReversedUDWF::Reversed(lag_udwf()),
            WindowShiftKind::Lead => ReversedUDWF::Reversed(lead_udwf()),
        }
    }

    fn documentation(&self) -> Option<&Documentation> {
        match self.kind {
            WindowShiftKind::Lag => Some(get_lag_doc()),
            WindowShiftKind::Lead => Some(get_lead_doc()),
        }
    }
}

/// When `lead`/`lag` is evaluated on a `NULL` expression we attempt to
/// refine it by matching it with the type of the default value.
///
/// For e.g. in `lead(NULL, 1, false)` the generic `ScalarValue::Null`
/// is refined into `ScalarValue::Boolean(None)`. Only the type is
/// refined, the expression value remains `NULL`.
///
/// When the window function is evaluated with `NULL` expression
/// this guarantees that the type matches with that of the default
/// value.
///
/// For more details see: <https://github.com/apache/datafusion/issues/12717>
fn parse_expr(
    input_exprs: &[Arc<dyn PhysicalExpr>],
    input_types: &[DataType],
) -> Result<Arc<dyn PhysicalExpr>> {
    assert!(!input_exprs.is_empty());
    assert!(!input_types.is_empty());

    let expr = Arc::clone(input_exprs.first().unwrap());
    let expr_type = input_types.first().unwrap();

    // Handles the most common case where NULL is unexpected
    if !expr_type.is_null() {
        return Ok(expr);
    }

    let default_value = get_scalar_value_from_args(input_exprs, 2)?;
    default_value.map_or(Ok(expr), |value| {
        ScalarValue::try_from(&value.data_type()).map(|v| {
            Arc::new(datafusion_physical_expr::expressions::Literal::new(v))
                as Arc<dyn PhysicalExpr>
        })
    })
}

/// Returns the data type of the default value(if provided) when the
/// expression is `NULL`.
///
/// Otherwise, returns the expression type unchanged.
fn parse_expr_type(input_types: &[DataType]) -> Result<DataType> {
    assert!(!input_types.is_empty());
    let expr_type = input_types.first().unwrap_or(&DataType::Null);

    // Handles the most common case where NULL is unexpected
    if !expr_type.is_null() {
        return Ok(expr_type.clone());
    }

    let default_value_type = input_types.get(2).unwrap_or(&DataType::Null);
    Ok(default_value_type.clone())
}

/// Handles type coercion and null value refinement for default value
/// argument depending on the data type of the input expression.
fn parse_default_value(
    input_exprs: &[Arc<dyn PhysicalExpr>],
    input_types: &[DataType],
) -> Result<ScalarValue> {
    let expr_type = parse_expr_type(input_types)?;
    let unparsed = get_scalar_value_from_args(input_exprs, 2)?;

    unparsed
        .filter(|v| !v.data_type().is_null())
        .map(|v| v.cast_to(&expr_type))
        .unwrap_or(ScalarValue::try_from(expr_type))
}

#[derive(Debug)]
struct WindowShiftEvaluator {
    shift_offset: i64,
    default_value: ScalarValue,
    ignore_nulls: bool,
    // VecDeque contains offset values that between non-null entries
    non_null_offsets: VecDeque<usize>,
}

impl WindowShiftEvaluator {
    fn is_lag(&self) -> bool {
        // Mode is LAG, when shift_offset is positive
        self.shift_offset > 0
    }
}

// implement ignore null for evaluate_all
fn evaluate_all_with_ignore_null(
    array: &ArrayRef,
    offset: i64,
    default_value: &ScalarValue,
    is_lag: bool,
) -> Result<ArrayRef, DataFusionError> {
    let valid_indices: Vec<usize> =
        array.nulls().unwrap().valid_indices().collect::<Vec<_>>();
    let direction = !is_lag;
    let new_array_results: Result<Vec<_>, DataFusionError> = (0..array.len())
        .map(|id| {
            let result_index = match valid_indices.binary_search(&id) {
                Ok(pos) => if direction {
                    pos.checked_add(offset as usize)
                } else {
                    pos.checked_sub(offset.unsigned_abs() as usize)
                }
                .and_then(|new_pos| {
                    if new_pos < valid_indices.len() {
                        Some(valid_indices[new_pos])
                    } else {
                        None
                    }
                }),
                Err(pos) => if direction {
                    pos.checked_add(offset as usize)
                } else if pos > 0 {
                    pos.checked_sub(offset.unsigned_abs() as usize)
                } else {
                    None
                }
                .and_then(|new_pos| {
                    if new_pos < valid_indices.len() {
                        Some(valid_indices[new_pos])
                    } else {
                        None
                    }
                }),
            };

            match result_index {
                Some(index) => ScalarValue::try_from_array(array, index),
                None => Ok(default_value.clone()),
            }
        })
        .collect();

    let new_array = new_array_results?;
    ScalarValue::iter_to_array(new_array)
}
// TODO: change the original arrow::compute::kernels::window::shift impl to support an optional default value
fn shift_with_default_value(
    array: &ArrayRef,
    offset: i64,
    default_value: &ScalarValue,
) -> Result<ArrayRef> {
    use datafusion_common::arrow::compute::concat;

    let value_len = array.len() as i64;
    if offset == 0 {
        Ok(Arc::clone(array))
    } else if offset == i64::MIN || offset.abs() >= value_len {
        default_value.to_array_of_size(value_len as usize)
    } else {
        let slice_offset = (-offset).clamp(0, value_len) as usize;
        let length = array.len() - offset.unsigned_abs() as usize;
        let slice = array.slice(slice_offset, length);

        // Generate array with remaining `null` items
        let nulls = offset.unsigned_abs() as usize;
        let default_values = default_value.to_array_of_size(nulls)?;

        // Concatenate both arrays, add nulls after if shift > 0 else before
        if offset > 0 {
            concat(&[default_values.as_ref(), slice.as_ref()])
                .map_err(|e| arrow_datafusion_err!(e))
        } else {
            concat(&[slice.as_ref(), default_values.as_ref()])
                .map_err(|e| arrow_datafusion_err!(e))
        }
    }
}

impl PartitionEvaluator for WindowShiftEvaluator {
    fn get_range(&self, idx: usize, n_rows: usize) -> Result<Range<usize>> {
        if self.is_lag() {
            let start = if self.non_null_offsets.len() == self.shift_offset as usize {
                // How many rows needed previous than the current row to get necessary lag result
                let offset: usize = self.non_null_offsets.iter().sum();
                idx.saturating_sub(offset)
            } else if !self.ignore_nulls {
                let offset = self.shift_offset as usize;
                idx.saturating_sub(offset)
            } else {
                0
            };
            let end = idx + 1;
            Ok(Range { start, end })
        } else {
            let end = if self.non_null_offsets.len() == (-self.shift_offset) as usize {
                // How many rows needed further than the current row to get necessary lead result
                let offset: usize = self.non_null_offsets.iter().sum();
                min(idx + offset + 1, n_rows)
            } else if !self.ignore_nulls {
                let offset = (-self.shift_offset) as usize;
                min(idx + offset, n_rows)
            } else {
                n_rows
            };
            Ok(Range { start: idx, end })
        }
    }

    fn is_causal(&self) -> bool {
        // Lagging windows are causal by definition:
        self.is_lag()
    }

    fn evaluate(
        &mut self,
        values: &[ArrayRef],
        range: &Range<usize>,
    ) -> Result<ScalarValue> {
        let array = &values[0];
        let len = array.len();

        // LAG mode
        let i = if self.is_lag() {
            (range.end as i64 - self.shift_offset - 1) as usize
        } else {
            // LEAD mode
            (range.start as i64 - self.shift_offset) as usize
        };

        let mut idx: Option<usize> = if i < len { Some(i) } else { None };

        // LAG with IGNORE NULLS calculated as the current row index - offset, but only for non-NULL rows
        // If current row index points to NULL value the row is NOT counted
        if self.ignore_nulls && self.is_lag() {
            // LAG when NULLS are ignored.
            // Find the nonNULL row index that shifted by offset comparing to current row index
            idx = if self.non_null_offsets.len() == self.shift_offset as usize {
                let total_offset: usize = self.non_null_offsets.iter().sum();
                Some(range.end - 1 - total_offset)
            } else {
                None
            };

            // Keep track of offset values between non-null entries
            if array.is_valid(range.end - 1) {
                // Non-null add new offset
                self.non_null_offsets.push_back(1);
                if self.non_null_offsets.len() > self.shift_offset as usize {
                    // WE do not need to keep track of more than `lag number of offset` values.
                    self.non_null_offsets.pop_front();
                }
            } else if !self.non_null_offsets.is_empty() {
                // Entry is null, increment offset value of the last entry.
                let end_idx = self.non_null_offsets.len() - 1;
                self.non_null_offsets[end_idx] += 1;
            }
        } else if self.ignore_nulls && !self.is_lag() {
            // LEAD when NULLS are ignored.
            // Stores the necessary non-null entry number further than the current row.
            let non_null_row_count = (-self.shift_offset) as usize;

            if self.non_null_offsets.is_empty() {
                // When empty, fill non_null offsets with the data further than the current row.
                let mut offset_val = 1;
                for idx in range.start + 1..range.end {
                    if array.is_valid(idx) {
                        self.non_null_offsets.push_back(offset_val);
                        offset_val = 1;
                    } else {
                        offset_val += 1;
                    }
                    // It is enough to keep track of `non_null_row_count + 1` non-null offset.
                    // further data is unnecessary for the result.
                    if self.non_null_offsets.len() == non_null_row_count + 1 {
                        break;
                    }
                }
            } else if range.end < len && array.is_valid(range.end) {
                // Update `non_null_offsets` with the new end data.
                if array.is_valid(range.end) {
                    // When non-null, append a new offset.
                    self.non_null_offsets.push_back(1);
                } else {
                    // When null, increment offset count of the last entry
                    let last_idx = self.non_null_offsets.len() - 1;
                    self.non_null_offsets[last_idx] += 1;
                }
            }

            // Find the nonNULL row index that shifted by offset comparing to current row index
            idx = if self.non_null_offsets.len() >= non_null_row_count {
                let total_offset: usize =
                    self.non_null_offsets.iter().take(non_null_row_count).sum();
                Some(range.start + total_offset)
            } else {
                None
            };
            // Prune `self.non_null_offsets` from the start. so that at next iteration
            // start of the `self.non_null_offsets` matches with current row.
            if !self.non_null_offsets.is_empty() {
                self.non_null_offsets[0] -= 1;
                if self.non_null_offsets[0] == 0 {
                    // When offset is 0. Remove it.
                    self.non_null_offsets.pop_front();
                }
            }
        }

        // Set the default value if
        // - index is out of window bounds
        // OR
        // - ignore nulls mode and current value is null and is within window bounds
        // .unwrap() is safe here as there is a none check in front
        #[allow(clippy::unnecessary_unwrap)]
        if !(idx.is_none() || (self.ignore_nulls && array.is_null(idx.unwrap()))) {
            ScalarValue::try_from_array(array, idx.unwrap())
        } else {
            Ok(self.default_value.clone())
        }
    }

    fn evaluate_all(
        &mut self,
        values: &[ArrayRef],
        _num_rows: usize,
    ) -> Result<ArrayRef> {
        // LEAD, LAG window functions take single column, values will have size 1
        let value = &values[0];
        if !self.ignore_nulls {
            shift_with_default_value(value, self.shift_offset, &self.default_value)
        } else {
            evaluate_all_with_ignore_null(
                value,
                self.shift_offset,
                &self.default_value,
                self.is_lag(),
            )
        }
    }

    fn supports_bounded_execution(&self) -> bool {
        true
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use arrow::array::*;
    use datafusion_common::cast::as_int32_array;
    use datafusion_physical_expr::expressions::{Column, Literal};
    use datafusion_physical_expr_common::physical_expr::PhysicalExpr;

    fn test_i32_result(
        expr: WindowShift,
        partition_evaluator_args: PartitionEvaluatorArgs,
        expected: Int32Array,
    ) -> Result<()> {
        let arr: ArrayRef = Arc::new(Int32Array::from(vec![1, -2, 3, -4, 5, -6, 7, 8]));
        let values = vec![arr];
        let num_rows = values.len();
        let result = expr
            .partition_evaluator(partition_evaluator_args)?
            .evaluate_all(&values, num_rows)?;
        let result = as_int32_array(&result)?;
        assert_eq!(expected, *result);
        Ok(())
    }

    #[test]
    fn lead_lag_get_range() -> Result<()> {
        // LAG(2)
        let lag_fn = WindowShiftEvaluator {
            shift_offset: 2,
            default_value: ScalarValue::Null,
            ignore_nulls: false,
            non_null_offsets: Default::default(),
        };
        assert_eq!(lag_fn.get_range(6, 10)?, Range { start: 4, end: 7 });
        assert_eq!(lag_fn.get_range(0, 10)?, Range { start: 0, end: 1 });

        // LAG(2 ignore nulls)
        let lag_fn = WindowShiftEvaluator {
            shift_offset: 2,
            default_value: ScalarValue::Null,
            ignore_nulls: true,
            // models data received [<Some>, <Some>, <Some>, NULL, <Some>, NULL, <current row>, ...]
            non_null_offsets: vec![2, 2].into(), // [1, 1, 2, 2] actually, just last 2 is used
        };
        assert_eq!(lag_fn.get_range(6, 10)?, Range { start: 2, end: 7 });

        // LEAD(2)
        let lead_fn = WindowShiftEvaluator {
            shift_offset: -2,
            default_value: ScalarValue::Null,
            ignore_nulls: false,
            non_null_offsets: Default::default(),
        };
        assert_eq!(lead_fn.get_range(6, 10)?, Range { start: 6, end: 8 });
        assert_eq!(lead_fn.get_range(9, 10)?, Range { start: 9, end: 10 });

        // LEAD(2 ignore nulls)
        let lead_fn = WindowShiftEvaluator {
            shift_offset: -2,
            default_value: ScalarValue::Null,
            ignore_nulls: true,
            // models data received [..., <current row>, NULL, <Some>, NULL, <Some>, ..]
            non_null_offsets: vec![2, 2].into(),
        };
        assert_eq!(lead_fn.get_range(4, 10)?, Range { start: 4, end: 9 });

        Ok(())
    }

    #[test]
    fn test_lead_window_shift() -> Result<()> {
        let expr = Arc::new(Column::new("c3", 0)) as Arc<dyn PhysicalExpr>;

        test_i32_result(
            WindowShift::lead(),
            PartitionEvaluatorArgs::new(&[expr], &[DataType::Int32], false, false),
            [
                Some(-2),
                Some(3),
                Some(-4),
                Some(5),
                Some(-6),
                Some(7),
                Some(8),
                None,
            ]
            .iter()
            .collect::<Int32Array>(),
        )
    }

    #[test]
    fn test_lag_window_shift() -> Result<()> {
        let expr = Arc::new(Column::new("c3", 0)) as Arc<dyn PhysicalExpr>;

        test_i32_result(
            WindowShift::lag(),
            PartitionEvaluatorArgs::new(&[expr], &[DataType::Int32], false, false),
            [
                None,
                Some(1),
                Some(-2),
                Some(3),
                Some(-4),
                Some(5),
                Some(-6),
                Some(7),
            ]
            .iter()
            .collect::<Int32Array>(),
        )
    }

    #[test]
    fn test_lag_with_default() -> Result<()> {
        let expr = Arc::new(Column::new("c3", 0)) as Arc<dyn PhysicalExpr>;
        let shift_offset =
            Arc::new(Literal::new(ScalarValue::Int32(Some(1)))) as Arc<dyn PhysicalExpr>;
        let default_value = Arc::new(Literal::new(ScalarValue::Int32(Some(100))))
            as Arc<dyn PhysicalExpr>;

        let input_exprs = &[expr, shift_offset, default_value];
        let input_types: &[DataType] =
            &[DataType::Int32, DataType::Int32, DataType::Int32];

        test_i32_result(
            WindowShift::lag(),
            PartitionEvaluatorArgs::new(input_exprs, input_types, false, false),
            [
                Some(100),
                Some(1),
                Some(-2),
                Some(3),
                Some(-4),
                Some(5),
                Some(-6),
                Some(7),
            ]
            .iter()
            .collect::<Int32Array>(),
        )
    }
}