1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Math function: `isnan()`.
use arrow::datatypes::DataType;
use datafusion_common::{exec_err, DataFusionError, Result};
use datafusion_expr::ColumnarValue;
use arrow::array::{ArrayRef, BooleanArray, Float32Array, Float64Array};
use datafusion_expr::TypeSignature::*;
use datafusion_expr::{ScalarUDFImpl, Signature, Volatility};
use std::any::Any;
use std::sync::Arc;
#[derive(Debug)]
pub struct IsNanFunc {
signature: Signature,
}
impl Default for IsNanFunc {
fn default() -> Self {
Self::new()
}
}
impl IsNanFunc {
pub fn new() -> Self {
use DataType::*;
Self {
signature: Signature::one_of(
vec![Exact(vec![Float32]), Exact(vec![Float64])],
Volatility::Immutable,
),
}
}
}
impl ScalarUDFImpl for IsNanFunc {
fn as_any(&self) -> &dyn Any {
self
}
fn name(&self) -> &str {
"isnan"
}
fn signature(&self) -> &Signature {
&self.signature
}
fn return_type(&self, _arg_types: &[DataType]) -> Result<DataType> {
Ok(DataType::Boolean)
}
fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> {
let args = ColumnarValue::values_to_arrays(args)?;
let arr: ArrayRef = match args[0].data_type() {
DataType::Float64 => Arc::new(make_function_scalar_inputs_return_type!(
&args[0],
self.name(),
Float64Array,
BooleanArray,
{ f64::is_nan }
)),
DataType::Float32 => Arc::new(make_function_scalar_inputs_return_type!(
&args[0],
self.name(),
Float32Array,
BooleanArray,
{ f32::is_nan }
)),
other => {
return exec_err!(
"Unsupported data type {other:?} for function {}",
self.name()
)
}
};
Ok(ColumnarValue::Array(arr))
}
}