1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use std::sync::Arc;

use arrow::array::{
    Array, ArrowPrimitiveType, GenericStringArray, OffsetSizeTrait, PrimitiveArray,
};
use arrow::compute::kernels::cast_utils::string_to_timestamp_nanos;
use arrow::datatypes::DataType;
use chrono::format::{parse, Parsed, StrftimeItems};
use chrono::LocalResult::Single;
use chrono::{DateTime, TimeZone, Utc};
use itertools::Either;

use datafusion_common::cast::as_generic_string_array;
use datafusion_common::{exec_err, DataFusionError, Result, ScalarType, ScalarValue};
use datafusion_expr::ColumnarValue;

/// Error message if nanosecond conversion request beyond supported interval
const ERR_NANOSECONDS_NOT_SUPPORTED: &str = "The dates that can be represented as nanoseconds have to be between 1677-09-21T00:12:44.0 and 2262-04-11T23:47:16.854775804";

/// Calls string_to_timestamp_nanos and converts the error type
pub(crate) fn string_to_timestamp_nanos_shim(s: &str) -> Result<i64> {
    string_to_timestamp_nanos(s).map_err(|e| e.into())
}

/// Checks that all the arguments from the second are of type [Utf8] or [LargeUtf8]
///
/// [Utf8]: DataType::Utf8
/// [LargeUtf8]: DataType::LargeUtf8
pub(crate) fn validate_data_types(args: &[ColumnarValue], name: &str) -> Result<()> {
    for (idx, a) in args.iter().skip(1).enumerate() {
        match a.data_type() {
            DataType::Utf8 | DataType::LargeUtf8 => {
                // all good
            }
            _ => {
                return exec_err!(
                    "{name} function unsupported data type at index {}: {}",
                    idx + 1,
                    a.data_type()
                );
            }
        }
    }

    Ok(())
}

/// Accepts a string and parses it using the [`chrono::format::strftime`] specifiers
/// relative to the provided `timezone`
///
/// [IANA timezones] are only supported if the `arrow-array/chrono-tz` feature is enabled
///
/// * `2023-01-01 040506 America/Los_Angeles`
///
/// If a timestamp is ambiguous, for example as a result of daylight-savings time, an error
/// will be returned
///
/// [`chrono::format::strftime`]: https://docs.rs/chrono/latest/chrono/format/strftime/index.html
/// [IANA timezones]: https://www.iana.org/time-zones
pub(crate) fn string_to_datetime_formatted<T: TimeZone>(
    timezone: &T,
    s: &str,
    format: &str,
) -> Result<DateTime<T>, DataFusionError> {
    let err = |err_ctx: &str| {
        DataFusionError::Execution(format!(
            "Error parsing timestamp from '{s}' using format '{format}': {err_ctx}"
        ))
    };

    let mut parsed = Parsed::new();
    parse(&mut parsed, s, StrftimeItems::new(format)).map_err(|e| err(&e.to_string()))?;

    // attempt to parse the string assuming it has a timezone
    let dt = parsed.to_datetime();

    if let Err(e) = &dt {
        // no timezone or other failure, try without a timezone
        let ndt = parsed
            .to_naive_datetime_with_offset(0)
            .or_else(|_| parsed.to_naive_date().map(|nd| nd.into()));
        if let Err(e) = &ndt {
            return Err(err(&e.to_string()));
        }

        if let Single(e) = &timezone.from_local_datetime(&ndt.unwrap()) {
            Ok(e.to_owned())
        } else {
            Err(err(&e.to_string()))
        }
    } else {
        Ok(dt.unwrap().with_timezone(timezone))
    }
}

/// Accepts a string with a `chrono` format and converts it to a
/// nanosecond precision timestamp.
///
/// See [`chrono::format::strftime`] for the full set of supported formats.
///
/// Implements the `to_timestamp` function to convert a string to a
/// timestamp, following the model of spark SQL’s to_`timestamp`.
///
/// Internally, this function uses the `chrono` library for the
/// datetime parsing
///
/// ## Timestamp Precision
///
/// Function uses the maximum precision timestamps supported by
/// Arrow (nanoseconds stored as a 64-bit integer) timestamps. This
/// means the range of dates that timestamps can represent is ~1677 AD
/// to 2262 AM
///
/// ## Timezone / Offset Handling
///
/// Numerical values of timestamps are stored compared to offset UTC.
///
/// Any timestamp in the formatting string is handled according to the rules
/// defined by `chrono`.
///
/// [`chrono::format::strftime`]: https://docs.rs/chrono/latest/chrono/format/strftime/index.html
///
#[inline]
pub(crate) fn string_to_timestamp_nanos_formatted(
    s: &str,
    format: &str,
) -> Result<i64, DataFusionError> {
    string_to_datetime_formatted(&Utc, s, format)?
        .naive_utc()
        .and_utc()
        .timestamp_nanos_opt()
        .ok_or_else(|| {
            DataFusionError::Execution(ERR_NANOSECONDS_NOT_SUPPORTED.to_string())
        })
}

pub(crate) fn handle<'a, O, F, S>(
    args: &'a [ColumnarValue],
    op: F,
    name: &str,
) -> Result<ColumnarValue>
where
    O: ArrowPrimitiveType,
    S: ScalarType<O::Native>,
    F: Fn(&'a str) -> Result<O::Native>,
{
    match &args[0] {
        ColumnarValue::Array(a) => match a.data_type() {
            DataType::Utf8 | DataType::LargeUtf8 => Ok(ColumnarValue::Array(Arc::new(
                unary_string_to_primitive_function::<i32, O, _>(&[a.as_ref()], op, name)?,
            ))),
            other => exec_err!("Unsupported data type {other:?} for function {name}"),
        },
        ColumnarValue::Scalar(scalar) => match scalar {
            ScalarValue::Utf8(a) | ScalarValue::LargeUtf8(a) => {
                let result = a.as_ref().map(|x| (op)(x)).transpose()?;
                Ok(ColumnarValue::Scalar(S::scalar(result)))
            }
            other => exec_err!("Unsupported data type {other:?} for function {name}"),
        },
    }
}

// given an function that maps a `&str`, `&str` to an arrow native type,
// returns a `ColumnarValue` where the function is applied to either a `ArrayRef` or `ScalarValue`
// depending on the `args`'s variant.
pub(crate) fn handle_multiple<'a, O, F, S, M>(
    args: &'a [ColumnarValue],
    op: F,
    op2: M,
    name: &str,
) -> Result<ColumnarValue>
where
    O: ArrowPrimitiveType,
    S: ScalarType<O::Native>,
    F: Fn(&'a str, &'a str) -> Result<O::Native>,
    M: Fn(O::Native) -> O::Native,
{
    match &args[0] {
        ColumnarValue::Array(a) => match a.data_type() {
            DataType::Utf8 | DataType::LargeUtf8 => {
                // validate the column types
                for (pos, arg) in args.iter().enumerate() {
                    match arg {
                        ColumnarValue::Array(arg) => match arg.data_type() {
                            DataType::Utf8 | DataType::LargeUtf8 => {
                                // all good
                            }
                            other => return exec_err!("Unsupported data type {other:?} for function {name}, arg # {pos}"),
                        },
                        ColumnarValue::Scalar(arg) => {
                            match arg.data_type() {
                                DataType::Utf8 | DataType::LargeUtf8 => {
                                    // all good
                                }
                                other => return exec_err!("Unsupported data type {other:?} for function {name}, arg # {pos}"),
                            }
                        }
                    }
                }

                Ok(ColumnarValue::Array(Arc::new(
                    strings_to_primitive_function::<i32, O, _, _>(args, op, op2, name)?,
                )))
            }
            other => {
                exec_err!("Unsupported data type {other:?} for function {name}")
            }
        },
        // if the first argument is a scalar utf8 all arguments are expected to be scalar utf8
        ColumnarValue::Scalar(scalar) => match scalar {
            ScalarValue::Utf8(a) | ScalarValue::LargeUtf8(a) => {
                let mut val: Option<Result<ColumnarValue>> = None;
                let mut err: Option<DataFusionError> = None;

                match a {
                    Some(a) => {
                        // enumerate all the values finding the first one that returns an Ok result
                        for (pos, v) in args.iter().enumerate().skip(1) {
                            if let ColumnarValue::Scalar(s) = v {
                                if let ScalarValue::Utf8(x) | ScalarValue::LargeUtf8(x) =
                                    s
                                {
                                    if let Some(s) = x {
                                        match op(a.as_str(), s.as_str()) {
                                            Ok(r) => {
                                                val = Some(Ok(ColumnarValue::Scalar(
                                                    S::scalar(Some(op2(r))),
                                                )));
                                                break;
                                            }
                                            Err(e) => {
                                                err = Some(e);
                                            }
                                        }
                                    }
                                } else {
                                    return exec_err!("Unsupported data type {s:?} for function {name}, arg # {pos}");
                                }
                            } else {
                                return exec_err!("Unsupported data type {v:?} for function {name}, arg # {pos}");
                            }
                        }
                    }
                    None => (),
                }

                if let Some(v) = val {
                    v
                } else {
                    Err(err.unwrap())
                }
            }
            other => {
                exec_err!("Unsupported data type {other:?} for function {name}")
            }
        },
    }
}

/// given a function `op` that maps `&str`, `&str` to the first successful Result
/// of an arrow native type, returns a `PrimitiveArray` after the application of the
/// function to `args` and the subsequence application of the `op2` function to any
/// successful result. This function calls the `op` function with the first and second
/// argument and if not successful continues with first and third, first and fourth,
/// etc until the result was successful or no more arguments are present.
/// # Errors
/// This function errors iff:
/// * the number of arguments is not > 1 or
/// * the array arguments are not castable to a `GenericStringArray` or
/// * the function `op` errors for all input
pub(crate) fn strings_to_primitive_function<'a, T, O, F, F2>(
    args: &'a [ColumnarValue],
    op: F,
    op2: F2,
    name: &str,
) -> Result<PrimitiveArray<O>>
where
    O: ArrowPrimitiveType,
    T: OffsetSizeTrait,
    F: Fn(&'a str, &'a str) -> Result<O::Native>,
    F2: Fn(O::Native) -> O::Native,
{
    if args.len() < 2 {
        return exec_err!(
            "{:?} args were supplied but {} takes 2 or more arguments",
            args.len(),
            name
        );
    }

    // this will throw the error if any of the array args are not castable to GenericStringArray
    let data = args
        .iter()
        .map(|a| match a {
            ColumnarValue::Array(a) => {
                Ok(Either::Left(as_generic_string_array::<T>(a.as_ref())?))
            }
            ColumnarValue::Scalar(s) => match s {
                ScalarValue::Utf8(a) | ScalarValue::LargeUtf8(a) => Ok(Either::Right(a)),
                other => exec_err!(
                    "Unexpected scalar type encountered '{other}' for function '{name}'"
                ),
            },
        })
        .collect::<Result<Vec<Either<&GenericStringArray<T>, &Option<String>>>>>()?;

    let first_arg = &data.first().unwrap().left().unwrap();

    first_arg
        .iter()
        .enumerate()
        .map(|(pos, x)| {
            let mut val = None;

            if let Some(x) = x {
                let param_args = data.iter().skip(1);

                // go through the args and find the first successful result. Only the last
                // failure will be returned if no successful result was received.
                for param_arg in param_args {
                    // param_arg is an array, use the corresponding index into the array as the arg
                    // we're currently parsing
                    let p = *param_arg;
                    let r = if p.is_left() {
                        let p = p.left().unwrap();
                        op(x, p.value(pos))
                    }
                    // args is a scalar, use it directly
                    else if let Some(p) = p.right().unwrap() {
                        op(x, p.as_str())
                    } else {
                        continue;
                    };

                    if r.is_ok() {
                        val = Some(Ok(op2(r.unwrap())));
                        break;
                    } else {
                        val = Some(r);
                    }
                }
            };

            val.transpose()
        })
        .collect()
}

/// given a function `op` that maps a `&str` to a Result of an arrow native type,
/// returns a `PrimitiveArray` after the application
/// of the function to `args[0]`.
/// # Errors
/// This function errors iff:
/// * the number of arguments is not 1 or
/// * the first argument is not castable to a `GenericStringArray` or
/// * the function `op` errors
fn unary_string_to_primitive_function<'a, T, O, F>(
    args: &[&'a dyn Array],
    op: F,
    name: &str,
) -> Result<PrimitiveArray<O>>
where
    O: ArrowPrimitiveType,
    T: OffsetSizeTrait,
    F: Fn(&'a str) -> Result<O::Native>,
{
    if args.len() != 1 {
        return exec_err!(
            "{:?} args were supplied but {} takes exactly one argument",
            args.len(),
            name
        );
    }

    let array = as_generic_string_array::<T>(args[0])?;

    // first map is the iterator, second is for the `Option<_>`
    array.iter().map(|x| x.map(&op).transpose()).collect()
}