1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use std::any::Any;
use std::sync::Arc;

use crate::utils::make_scalar_function;

use arrow::array::{ArrayRef, Float32Array, Float64Array, Int64Array};
use arrow::datatypes::DataType;
use arrow::datatypes::DataType::{Float32, Float64};
use datafusion_common::ScalarValue::Int64;
use datafusion_common::{exec_err, DataFusionError, Result};
use datafusion_expr::sort_properties::{ExprProperties, SortProperties};
use datafusion_expr::TypeSignature::Exact;
use datafusion_expr::{ColumnarValue, ScalarUDFImpl, Signature, Volatility};

#[derive(Debug)]
pub struct TruncFunc {
    signature: Signature,
}

impl Default for TruncFunc {
    fn default() -> Self {
        TruncFunc::new()
    }
}

impl TruncFunc {
    pub fn new() -> Self {
        use DataType::*;
        Self {
            // math expressions expect 1 argument of type f64 or f32
            // priority is given to f64 because e.g. `sqrt(1i32)` is in IR (real numbers) and thus we
            // return the best approximation for it (in f64).
            // We accept f32 because in this case it is clear that the best approximation
            // will be as good as the number of digits in the number
            signature: Signature::one_of(
                vec![
                    Exact(vec![Float32, Int64]),
                    Exact(vec![Float64, Int64]),
                    Exact(vec![Float64]),
                    Exact(vec![Float32]),
                ],
                Volatility::Immutable,
            ),
        }
    }
}

impl ScalarUDFImpl for TruncFunc {
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn name(&self) -> &str {
        "trunc"
    }

    fn signature(&self) -> &Signature {
        &self.signature
    }

    fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
        match arg_types[0] {
            Float32 => Ok(Float32),
            _ => Ok(Float64),
        }
    }

    fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> {
        make_scalar_function(trunc, vec![])(args)
    }

    fn output_ordering(&self, input: &[ExprProperties]) -> Result<SortProperties> {
        // trunc preserves the order of the first argument
        let value = &input[0];
        let precision = input.get(1);

        if precision
            .map(|r| r.sort_properties.eq(&SortProperties::Singleton))
            .unwrap_or(true)
        {
            Ok(value.sort_properties)
        } else {
            Ok(SortProperties::Unordered)
        }
    }
}

/// Truncate(numeric, decimalPrecision) and trunc(numeric) SQL function
fn trunc(args: &[ArrayRef]) -> Result<ArrayRef> {
    if args.len() != 1 && args.len() != 2 {
        return exec_err!(
            "truncate function requires one or two arguments, got {}",
            args.len()
        );
    }

    //if only one arg then invoke toolchain trunc(num) and precision = 0 by default
    //or then invoke the compute_truncate method to process precision
    let num = &args[0];
    let precision = if args.len() == 1 {
        ColumnarValue::Scalar(Int64(Some(0)))
    } else {
        ColumnarValue::Array(Arc::clone(&args[1]))
    };

    match args[0].data_type() {
        Float64 => match precision {
            ColumnarValue::Scalar(Int64(Some(0))) => Ok(Arc::new(
                make_function_scalar_inputs!(num, "num", Float64Array, { f64::trunc }),
            ) as ArrayRef),
            ColumnarValue::Array(precision) => Ok(Arc::new(make_function_inputs2!(
                num,
                precision,
                "x",
                "y",
                Float64Array,
                Int64Array,
                { compute_truncate64 }
            )) as ArrayRef),
            _ => exec_err!("trunc function requires a scalar or array for precision"),
        },
        Float32 => match precision {
            ColumnarValue::Scalar(Int64(Some(0))) => Ok(Arc::new(
                make_function_scalar_inputs!(num, "num", Float32Array, { f32::trunc }),
            ) as ArrayRef),
            ColumnarValue::Array(precision) => Ok(Arc::new(make_function_inputs2!(
                num,
                precision,
                "x",
                "y",
                Float32Array,
                Int64Array,
                { compute_truncate32 }
            )) as ArrayRef),
            _ => exec_err!("trunc function requires a scalar or array for precision"),
        },
        other => exec_err!("Unsupported data type {other:?} for function trunc"),
    }
}

fn compute_truncate32(x: f32, y: i64) -> f32 {
    let factor = 10.0_f32.powi(y as i32);
    (x * factor).round() / factor
}

fn compute_truncate64(x: f64, y: i64) -> f64 {
    let factor = 10.0_f64.powi(y as i32);
    (x * factor).round() / factor
}

#[cfg(test)]
mod test {
    use std::sync::Arc;

    use crate::math::trunc::trunc;

    use arrow::array::{ArrayRef, Float32Array, Float64Array, Int64Array};
    use datafusion_common::cast::{as_float32_array, as_float64_array};

    #[test]
    fn test_truncate_32() {
        let args: Vec<ArrayRef> = vec![
            Arc::new(Float32Array::from(vec![
                15.0,
                1_234.267_8,
                1_233.123_4,
                3.312_979_2,
                -21.123_4,
            ])),
            Arc::new(Int64Array::from(vec![0, 3, 2, 5, 6])),
        ];

        let result = trunc(&args).expect("failed to initialize function truncate");
        let floats =
            as_float32_array(&result).expect("failed to initialize function truncate");

        assert_eq!(floats.len(), 5);
        assert_eq!(floats.value(0), 15.0);
        assert_eq!(floats.value(1), 1_234.268);
        assert_eq!(floats.value(2), 1_233.12);
        assert_eq!(floats.value(3), 3.312_98);
        assert_eq!(floats.value(4), -21.123_4);
    }

    #[test]
    fn test_truncate_64() {
        let args: Vec<ArrayRef> = vec![
            Arc::new(Float64Array::from(vec![
                5.0,
                234.267_812_176,
                123.123_456_789,
                123.312_979_313_2,
                -321.123_1,
            ])),
            Arc::new(Int64Array::from(vec![0, 3, 2, 5, 6])),
        ];

        let result = trunc(&args).expect("failed to initialize function truncate");
        let floats =
            as_float64_array(&result).expect("failed to initialize function truncate");

        assert_eq!(floats.len(), 5);
        assert_eq!(floats.value(0), 5.0);
        assert_eq!(floats.value(1), 234.268);
        assert_eq!(floats.value(2), 123.12);
        assert_eq!(floats.value(3), 123.312_98);
        assert_eq!(floats.value(4), -321.123_1);
    }

    #[test]
    fn test_truncate_64_one_arg() {
        let args: Vec<ArrayRef> = vec![Arc::new(Float64Array::from(vec![
            5.0,
            234.267_812,
            123.123_45,
            123.312_979_313_2,
            -321.123,
        ]))];

        let result = trunc(&args).expect("failed to initialize function truncate");
        let floats =
            as_float64_array(&result).expect("failed to initialize function truncate");

        assert_eq!(floats.len(), 5);
        assert_eq!(floats.value(0), 5.0);
        assert_eq!(floats.value(1), 234.0);
        assert_eq!(floats.value(2), 123.0);
        assert_eq!(floats.value(3), 123.0);
        assert_eq!(floats.value(4), -321.0);
    }
}