1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use datafusion_common::{exec_err, Result, ScalarValue};
use datafusion_expr::interval_arithmetic::Interval;
use datafusion_expr::sort_properties::{ExprProperties, SortProperties};

/// Non-increasing on the interval \[−1, 1\], undefined otherwise.
pub fn acos_order(input: &[ExprProperties]) -> Result<SortProperties> {
    let arg = &input[0];
    let range = &arg.range;

    let valid_domain =
        Interval::make_symmetric_unit_interval(&range.lower().data_type())?;

    if valid_domain.contains(range)? == Interval::CERTAINLY_TRUE {
        Ok(-arg.sort_properties)
    } else {
        exec_err!("Input range of ACOS contains out-of-domain values")
    }
}

/// Non-decreasing for x ≥ 1, undefined otherwise.
pub fn acosh_order(input: &[ExprProperties]) -> Result<SortProperties> {
    let arg = &input[0];
    let range = &arg.range;

    let valid_domain = Interval::try_new(
        ScalarValue::new_one(&range.lower().data_type())?,
        ScalarValue::try_from(&range.upper().data_type())?,
    )?;

    if valid_domain.contains(range)? == Interval::CERTAINLY_TRUE {
        Ok(arg.sort_properties)
    } else {
        exec_err!("Input range of ACOSH contains out-of-domain values")
    }
}

/// Non-decreasing on the interval \[−1, 1\], undefined otherwise.
pub fn asin_order(input: &[ExprProperties]) -> Result<SortProperties> {
    let arg = &input[0];
    let range = &arg.range;

    let valid_domain =
        Interval::make_symmetric_unit_interval(&range.lower().data_type())?;

    if valid_domain.contains(range)? == Interval::CERTAINLY_TRUE {
        Ok(arg.sort_properties)
    } else {
        exec_err!("Input range of ASIN contains out-of-domain values")
    }
}

/// Non-decreasing for all real numbers.
pub fn asinh_order(input: &[ExprProperties]) -> Result<SortProperties> {
    Ok(input[0].sort_properties)
}

/// Non-decreasing for all real numbers.
pub fn atan_order(input: &[ExprProperties]) -> Result<SortProperties> {
    Ok(input[0].sort_properties)
}

/// Non-decreasing on the interval \[−1, 1\], undefined otherwise.
pub fn atanh_order(input: &[ExprProperties]) -> Result<SortProperties> {
    let arg = &input[0];
    let range = &arg.range;

    let valid_domain =
        Interval::make_symmetric_unit_interval(&range.lower().data_type())?;

    if valid_domain.contains(range)? == Interval::CERTAINLY_TRUE {
        Ok(arg.sort_properties)
    } else {
        exec_err!("Input range of ATANH contains out-of-domain values")
    }
}

/// Order depends on the quadrant.
// TODO: Implement ordering rule of the ATAN2 function.
pub fn atan2_order(_input: &[ExprProperties]) -> Result<SortProperties> {
    Ok(SortProperties::Unordered)
}

/// Non-decreasing for all real numbers.
pub fn cbrt_order(input: &[ExprProperties]) -> Result<SortProperties> {
    Ok(input[0].sort_properties)
}

/// Non-decreasing for all real numbers.
pub fn ceil_order(input: &[ExprProperties]) -> Result<SortProperties> {
    Ok(input[0].sort_properties)
}

/// Non-increasing on \[0, π\] and then non-decreasing on \[π, 2π\].
/// This pattern repeats periodically with a period of 2π.
// TODO: Implement ordering rule of the ATAN2 function.
pub fn cos_order(_input: &[ExprProperties]) -> Result<SortProperties> {
    Ok(SortProperties::Unordered)
}

/// Non-decreasing for x ≥ 0 and symmetrically non-increasing for x ≤ 0.
pub fn cosh_order(input: &[ExprProperties]) -> Result<SortProperties> {
    let arg = &input[0];
    let range = &arg.range;

    let zero_point = Interval::make_zero(&range.lower().data_type())?;

    if range.gt_eq(&zero_point)? == Interval::CERTAINLY_TRUE {
        Ok(arg.sort_properties)
    } else if range.lt_eq(&zero_point)? == Interval::CERTAINLY_TRUE {
        Ok(-arg.sort_properties)
    } else {
        Ok(SortProperties::Unordered)
    }
}

/// Non-decreasing function that converts radians to degrees.
pub fn degrees_order(input: &[ExprProperties]) -> Result<SortProperties> {
    Ok(input[0].sort_properties)
}

/// Non-decreasing for all real numbers.
pub fn exp_order(input: &[ExprProperties]) -> Result<SortProperties> {
    Ok(input[0].sort_properties)
}

/// Non-decreasing for all real numbers.
pub fn floor_order(input: &[ExprProperties]) -> Result<SortProperties> {
    Ok(input[0].sort_properties)
}

/// Non-decreasing for x ≥ 0, undefined otherwise.
pub fn ln_order(input: &[ExprProperties]) -> Result<SortProperties> {
    let arg = &input[0];
    let range = &arg.range;

    let zero_point = Interval::make_zero(&range.lower().data_type())?;

    if range.gt_eq(&zero_point)? == Interval::CERTAINLY_TRUE {
        Ok(arg.sort_properties)
    } else {
        exec_err!("Input range of LN contains out-of-domain values")
    }
}

/// Non-decreasing for x ≥ 0, undefined otherwise.
pub fn log2_order(input: &[ExprProperties]) -> Result<SortProperties> {
    let arg = &input[0];
    let range = &arg.range;

    let zero_point = Interval::make_zero(&range.lower().data_type())?;

    if range.gt_eq(&zero_point)? == Interval::CERTAINLY_TRUE {
        Ok(arg.sort_properties)
    } else {
        exec_err!("Input range of LOG2 contains out-of-domain values")
    }
}

/// Non-decreasing for x ≥ 0, undefined otherwise.
pub fn log10_order(input: &[ExprProperties]) -> Result<SortProperties> {
    let arg = &input[0];
    let range = &arg.range;

    let zero_point = Interval::make_zero(&range.lower().data_type())?;

    if range.gt_eq(&zero_point)? == Interval::CERTAINLY_TRUE {
        Ok(arg.sort_properties)
    } else {
        exec_err!("Input range of LOG10 contains out-of-domain values")
    }
}

/// Non-decreasing for all real numbers x.
pub fn radians_order(input: &[ExprProperties]) -> Result<SortProperties> {
    Ok(input[0].sort_properties)
}

/// Non-decreasing on \[0, π\] and then non-increasing on \[π, 2π\].
/// This pattern repeats periodically with a period of 2π.
// TODO: Implement ordering rule of the SIN function.
pub fn sin_order(_input: &[ExprProperties]) -> Result<SortProperties> {
    Ok(SortProperties::Unordered)
}

/// Non-decreasing for all real numbers.
pub fn sinh_order(input: &[ExprProperties]) -> Result<SortProperties> {
    Ok(input[0].sort_properties)
}

/// Non-decreasing for x ≥ 0, undefined otherwise.
pub fn sqrt_order(input: &[ExprProperties]) -> Result<SortProperties> {
    let arg = &input[0];
    let range = &arg.range;

    let zero_point = Interval::make_zero(&range.lower().data_type())?;

    if range.gt_eq(&zero_point)? == Interval::CERTAINLY_TRUE {
        Ok(arg.sort_properties)
    } else {
        exec_err!("Input range of SQRT contains out-of-domain values")
    }
}

/// Non-decreasing between vertical asymptotes at x = k * π ± π / 2 for any
/// integer k.
// TODO: Implement ordering rule of the TAN function.
pub fn tan_order(_input: &[ExprProperties]) -> Result<SortProperties> {
    Ok(SortProperties::Unordered)
}

/// Non-decreasing for all real numbers.
pub fn tanh_order(input: &[ExprProperties]) -> Result<SortProperties> {
    Ok(input[0].sort_properties)
}